Math, asked by NainaMehra, 1 year ago

An AP 5, 12, 19, ... has 50 terms. Find its last term. Hence, find the sum of its last 15 terms.


Answers

Answered by Anonymous
50

\underline{\underline{\large{\mathfrak{Solution : }}}}




\underline{\mathsf{Given \: A.P. \longrightarrow 5 , 12 , 19 ,.............}} \\ \\<br /><br />\mathsf{Here,} \\ \\<br /><br />\mathsf{\implies First \: term (a) \: = \: 5 } \\ \\<br /><br />\mathsf{\implies Common \: difference (d) \: = \: 12 \: - \: 5 \: = \: 7} \\ \\<br /><br />\mathsf{\implies No. \: of \: terms \: = \: 50 } \\ \\<br /><br />\mathsf{\implies Last \: term (l) \: = \: ?}


\underline{\textsf{Using Formula : }} \\ \\ \boxed{\mathsf{\implies l \: = \: a \: + \: ( n \: - \: 1)d}}


\mathsf{\implies l \: = \: 5 \: + \: ( 50 \: - \: 1)7} \\ \\<br /><br />\mathsf{\implies l \: = \: 5 \: + \: 49 \: \times \: 7 } \\ \\<br /><br />\mathsf{\implies l \: = \: 5 \: + \: 343 } \\ \\<br /><br />\mathsf{\therefore \quad \: l \: = \: 348}



\underline{\textsf{Now, we have to find sum of last 15 terms.}} \\ \\<br /><br />\mathsf{Here,} \\  \\ <br /><br />\mathsf{\implies First \: term ( a ) \: = \: ? } \\ \\<br /><br />\mathsf{\implies Common \: difference (d) \: = \: 7 } \\ \\<br /><br />\mathsf{\implies No. \: of \: terms (n) \: = \: 15 } \\ \\<br /><br />\mathsf{\implies Last \: term (l) \: = \: 348}<br />  \\  \\  \mathsf{\implies Sum \: of \: 15 \: terms \: = \: ?}



\underline{\textsf{Using Formula : }} \\ \\ \boxed{\mathsf{\implies l \: = \: a \: + \: ( n \: - \: 1)d}}



\mathsf{\implies 348 \: = \: a \: + \: ( 15 \: - \: 1)7} \\ \\<br /><br />\mathsf{\implies 348 \: = \: a \: + \: 14 \: \times \: 7 } \\ \\<br /><br />\mathsf{\implies 348 \: = \: a \: + \: 98 } \\ \\<br /><br />\mathsf{\implies a \: = \: 348 \: - \: 98 } \\ \\<br /><br />\mathsf{\therefore \quad \: a \: = \: 250}




\textsf{Using Formula : } \\ \\<br /><br />\boxed{\mathsf{\implies S_{n} \: = \: \dfrac{n}{2}(a \: + \: l)}} \\ \\ <br /><br />\mathsf{\implies S_{15} \: = \: \dfrac{15}{2}( 250 \: + \: 348 )} \\ \\<br /><br />\mathsf{\implies S_{15} \: = \: \dfrac{15}{2} \: \times 598 } \\ \\<br /><br />\mathsf{\implies S_{15} \: = \: 15 \: \times \: 299} \\ \\<br /><br />\mathsf{\therefore \quad \:  S_{15} \: = \: 4,485}

arti44: good
Answered by Anonymous
16
Here \: is \: the \: answer \: of \: your \: question

\textbf{According to question we have given that;}

\textbf{a = 5}

\textbf{n = 50}

\textbf{d = 12 - 5 = 7}

\textbf{an = ?}

Formula used :-

\textbf{an = a + (n - 1)d}

\textbf{an = 5 + (50 - 1) 7}

\textbf{an = 5 + (49 x 7)}

\textbf{an = 5 + 343}

\textbf{an = 348}
___________________________________

Now,

\textbf{a = ?}

\textbf{S15 = ?}

\textbf{n = 15}

\textbf{an = 348}

\textbf{d = 7}

Formula used :-

\textbf{an = a + (n - 1) d}

\textbf{348 = a + (15 - 1) 7}

\textbf{348 = a + (14 x 7)}

\textbf{348 = a + 98}

\textbf{a = 250}

Now, we have to S15. So, formula used is

\textbf{Sn = n/2 [a + an]}

\textbf{S15 = 15/2 [250 + 348]}

\textbf{S15 = 15/2 (598)}

\textbf{S15 = 15 x 299}

\textbf{S15 = 4485}
___________________________________
Similar questions