An AP consists of 37 terms . The sum of the three middle most term is 225 and the sum of the last three term is 429. Find AP.
Class 10
Arithmetic Progression
Answers
Answered by
15
Let the first term and the common difference of the A.P are a and d respectively.
Since the A.P contains 37 terms. So, the middle most term is (37+1)/2 th term = 19th term.
Thus, three middle most terms of this A.P.are 18th, 19th and 20th terms.
Given a 18 + a 19 + a 20 = 225
⇒ (a + 17d) + (a + 18d) + (a + 19d) = 225
⇒ 3(a + 18d) = 225
⇒ a + 18d = 75
⇒ a = 75 – 18d … (1)
According to given information
a 35 + a 36 + a 37 = 429
⇒ (a + 34d) + (a + 35d) + (a + 36d) = 429
⇒ 3(a + 35d) = 429
⇒ (75 – 18d) + 35d = 143
⇒ 17d = 143 – 75 = 68
⇒ d = 4
Substituting the value of d in equation (1), it is obtained
a = 75 – 18 × 4 = 3
Thus, the A.P. is 3, 7, 11, 15 , 19 .... ( Ans )
Since the A.P contains 37 terms. So, the middle most term is (37+1)/2 th term = 19th term.
Thus, three middle most terms of this A.P.are 18th, 19th and 20th terms.
Given a 18 + a 19 + a 20 = 225
⇒ (a + 17d) + (a + 18d) + (a + 19d) = 225
⇒ 3(a + 18d) = 225
⇒ a + 18d = 75
⇒ a = 75 – 18d … (1)
According to given information
a 35 + a 36 + a 37 = 429
⇒ (a + 34d) + (a + 35d) + (a + 36d) = 429
⇒ 3(a + 35d) = 429
⇒ (75 – 18d) + 35d = 143
⇒ 17d = 143 – 75 = 68
⇒ d = 4
Substituting the value of d in equation (1), it is obtained
a = 75 – 18 × 4 = 3
Thus, the A.P. is 3, 7, 11, 15 , 19 .... ( Ans )
Similar questions