Math, asked by Anonymous, 1 year ago

An AP consists of 37 terms. The sum of three middle most terms is 225 & sum of last three terms is 429.Find the AP

Answers

Answered by Kushal456
11
Let the first term and the common difference of the A.P are a and d respectively.

Since the A.P contains 37 terms. So, the middle most term is (37+1)/2 th term = 19th term.

Thus, three middle most terms of this A.P.are 18th, 19th and 20th terms.

Given a 18 + a 19 + a 20 = 225

⇒ (a + 17d) + (a + 18d) + (a + 19d) = 225

⇒ 3(a + 18d) = 225

⇒ a + 18d = 75

⇒ a = 75 – 18d … (1)

 

According to given information

a 35 + a 36 + a 37 = 429

⇒ (a + 34d) + (a + 35d) + (a + 36d) = 429

⇒ 3(a + 35d) = 429

⇒ (75 – 18d) + 35d = 143

⇒ 17d = 143 – 75 = 68

⇒ d = 4

 

Substituting the value of d in equation (1), it is obtained

a = 75 – 18 × 4 = 3

 

Thus, the A.P. is 3, 7, 11, 15 …

 

Hope! This will help you



adithya02: Haha nice copy paste
Kushal456: Just to help
adithya02: No problem
Answered by Rishi213
14

Let the first term and the common difference of the A.P are a and d respectively.

Since the A.P contains 37 terms. So, the middlemost term is (37+1)/2 th term = 19th term.

Thus, three middle most terms of this A.P.are 18th, 19th and 20th terms.

Given a 18 + a 19 + a 20 = 225

⇒ (a + 17d) + (a + 18d) + (a + 19d) = 225

⇒ 3(a + 18d) = 225

⇒ a + 18d = 75

⇒ a = 75 – 18d … (1)

Accordingly

a 35 + a 36 + a 37 = 429

⇒ (a + 34d) + (a + 35d) + (a + 36d) = 429

⇒ 3(a + 35d) = 429

⇒ (75 – 18d) + 35d = 143

⇒ 17d = 143 – 75 = 68

⇒ d = 4

Substituting the value of d in equation (1), it is obtained

a = 75 – 18 × 4 = 3

Thus, the A.P. is 3, 7, 11, 15 …


adithya02: Lol both answers are ditto same coz both copy pasted from same website Lololol
Rishi213: had it written in my book :/
adithya02: lol
Similar questions