Math, asked by shahkalp07, 1 month ago

An AP has eight terms. The sixth term is 15 and the sum of the odd terms is 44. What is the first term?

Answers

Answered by IIBandookbaazII
1

\begin{gathered}\sf T Table \\\boxed{\boxed{\red{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A &amp; \bf{0}^{ \circ} &amp; \bf{30}^{ \circ} &amp; \bf{45}^{ \circ} &amp; \bf{60}^{ \circ} &amp; \bf{90}^{ \circ} \\ \\ \rm sin A &amp; 0 &amp; \dfrac{1}{2}&amp; \dfrac{1}{ \sqrt{2} } &amp; \dfrac{ \sqrt{3}}{2} &amp;1 \\ \\ \rm cos \: A &amp; 1 &amp; \dfrac{ \sqrt{3} }{2}&amp; \dfrac{1}{ \sqrt{2} } &amp; \dfrac{1}{2} &amp;0 \\ \\ \rm tan A &amp; 0 &amp; \dfrac{1}{ \sqrt{3} }&amp;1 &amp; \sqrt{3} &amp; \rm \infty \\ \\ \rm cosec A &amp; \rm \infty &amp; 2&amp; \sqrt{2} &amp; \dfrac{2}{ \sqrt{3} } &amp;1 \\ \\ \rm sec A &amp; 1 &amp; \dfrac{2}{ \sqrt{3} }&amp; \sqrt{2} &amp; 2 &amp; \rm \infty \\ \\ \rm cot A &amp; \rm \infty &amp; \sqrt{3} &amp; 1 &amp; \dfrac{1}{ \sqrt{3} } &amp; 0 \end{array}}}}\end{gathered}TrigonometryTable∠AsinAcosAtanAcosecAsecAcotA0∘010∞1∞30∘212331232345∘2121122160∘232133223190∘10∞1∞0</p><p>

Answered by anupamsgpgi
0

Answer:

Here,

a

4

=a+3d

a

8

=a+7d

Therefore,

a+3d+a+7d=24

2a+10d=24

a+5d=12 …… (1)

Again,

a

6

=a+5d

a

10

=a+9d

Therefore,

a+5d+a+9d=44

2a+14d=44

a+7d=22 ……. (2)

Solving equations (1) and (2), we get

d=5 and a=−13

Therefore,

a

1

=a=−13

a

2

=a+d=−13+5=−8

a

3

=a+2d=−13+10=−3

Similar questions