Math, asked by pruthvi9079, 1 year ago

An arc of circle radius 14 cm makes an angle of 60degree at the centre find the area of the minor and the major segment

Answers

Answered by aevlin
3

Answer Is:

Radius of the circle = 14 cm

ΔAOB is isosceles as two sides are equal.

∴ ∠A = ∠B

Sum of all angles of triangle = 180°

∠A + ∠B + ∠C = 180°

⇒ 2 ∠A = 180° - 60°

⇒ ∠A = 120°/2

⇒ ∠A = 60°

Triangle is equilateral as ∠A = ∠B = ∠C = 60°

∴ OA = OB = AB = 14 cm

Area of equilateral ΔAOB = √3/4 × (OA)2 = √3/4 × 142  

                                         = (196√3)/4 cm2 = 84.87 cm2

Angle subtend at the centre by minor segment = 60°

Area of Minor sector making angle 60° = (60°/360°) × π r2 cm2

                                                                                    = (1/6) × 142 π  cm2 =  196/6 π  cm2

                                                 =  (196/6) × 3.14 cm2 = 102.57  cm2

 

Area of the minor segment = Area of Minor sector - Area of equilateral ΔAOB

                                           = 102.75  cm2 - 84.87 cm2 = 17.87 cm2

 

Angle made by Major sector = 360° - 60° = 300°

Area of the sector making angle 300° = (300°/360°) × π r2 cm2

                                                  = (5/6) × 142 π  cm2 =  980/6 π  cm2

                                                 =  (980/6) × 3.14 cm2 = 512.86  cm2

 

Area of major segment = Area of Minor sector + Area of equilateral ΔAOB

                                           = 512.86  cm2 + 84.87 cm2 = 597.73 cm2

Answered by jeenathsuresh
2

Radius of the circle = 14 cm


ΔAOB is isosceles as two sides are equal.


∴ ∠A = ∠B


Sum of all angles of triangle = 180°


∠A + ∠B + ∠C = 180°


⇒ 2 ∠A = 180° - 60°


⇒ ∠A = 120°/2


⇒ ∠A = 60°


Triangle is equilateral as ∠A = ∠B = ∠C = 60°


∴ OA = OB = AB = 14 cm


Area of equilateral ΔAOB = √3/4 × (OA)2 = √3/4 × 142  


                                         = (196√3)/4 cm2 = 84.87 cm2


Angle subtend at the centre by minor segment = 60°


Area of Minor sector making angle 60° = (60°/360°) × π r2 cm2


                                                                                    = (1/6) × 142 π  cm2 =  196/6 π  cm2


                                                 =  (196/6) × 3.14 cm2 = 102.57  cm2


 


Area of the minor segment = Area of Minor sector - Area of equilateral ΔAOB


                                           = 102.75  cm2 - 84.87 cm2 = 17.87 cm2


 


Angle made by Major sector = 360° - 60° = 300°


Area of the sector making angle 300° = (300°/360°) × π r2 cm2


                                                  = (5/6) × 142 π  cm2 =  980/6 π  cm2


                                                 =  (980/6) × 3.14 cm2 = 512.86  cm2


 


Area of major segment = Area of Minor sector + Area of equilateral ΔAOB


                                           = 512.86  cm2 + 84.87 cm2 = 597.73cm^2

Similar questions