Math, asked by rayaanlone, 10 months ago

An arithmetic sequence has a 2nd term equal to 7 and 8th term equal to -23. Find the term of the sequence that has value -183

Answers

Answered by BrainlyPopularman
32

ANSWER :

GIVEN :

Second term of A.P. = 7

• 8th term of A.P. = -23

TO FIND :

• The term of the sequence that has value -183 = ?

SOLUTION :

• We know that nth term of A.P. is –

 \\  \:  \:  \implies \:  \large \: { \boxed{ \bold{ T_{n}  = a + (n - 1)d}}} \:  \:  \\

• Here –

 \\  \:  \:   \:  \: { \huge{.}} \:   \: { \bold{ a =first \:  \: term }} \:  \:  \\

 \\  \:  \:   \:  \: { \huge{.}} \:   \: { \bold{ d =common \:  \: difference}} \:  \:  \\

 \\  \:  \:   \:  \: { \huge{.}} \:   \: { \bold{ n =total \:  \: terms}} \:  \:  \\

 \\  \:  \:   \:  \: { \huge{.}} \:   \: { \bold{  T_{n}=n \th \:  \: term}} \:  \:  \\

• According to the first condition –

 \\  \:  \:  \implies \:   \: { \bold{ T_{2}  = 7}} \:  \:  \\

 \\  \:  \:  \implies \:   \: { \bold{a + (2 - 1)d = 7}} \:  \:  \\

 \\  \:  \:  \implies \:   \: { \bold{a + d = 7}} \:  \:  \\

 \\  \:  \:  \implies \:   \: { \bold{a = 7 - d \:  \:  \:  \:  \:  \:  -  -  -  - eq.(1)}} \:  \:  \\

• According to the second condition –

 \\  \:  \:  \implies \:   \: { \bold{ T_{8}  =  - 23}} \:  \:  \\

 \\  \:  \:  \implies \:   \: { \bold{a + (8 - 1)d  =  - 23}} \:  \:  \\

 \\  \:  \:  \implies \:   \: { \bold{a + 7d  =  - 23}} \:  \:  \\

• Using eq.(1) –

 \\  \:  \:  \implies \:   \: { \bold{7 - d + 7d  =  - 23}} \:  \:  \\

 \\  \:  \:  \implies \:   \: { \bold{7  + 6d  =  - 23}} \:  \:  \\

 \\  \:  \:  \implies \:   \: { \bold{ 6d  =  - 30}} \:  \:  \\

 \\  \:  \:  \implies \:   \: { \bold{ d  =  - 5}} \:  \:  \\

• Now put the value of 'd' in eq.(1)

 \\  \:  \:  \implies \:   \: { \bold{a = 7 - ( - 5) }} \:  \:  \\

 \\  \:  \:  \implies \:   \: { \bold{a  = 12 }} \:  \:  \\

• Now Let's find the term that has value (-183) –

 \\  \:  \implies \:  { \bold{ - 183= 12 + (n - 1)( - 5)}} \:  \:  \\

 \\  \:  \implies \:  { \bold{ - 183 - 12= (n - 1)( - 5)}} \:  \:  \\

 \\  \:  \implies \:  { \bold{ - 195= (n - 1)( - 5)}} \:  \:  \\

 \\  \:  \implies \:  { \bold{  (n - 1) =  \dfrac{ - 195}{ - 5} }} \:  \:  \\

 \\  \:  \implies \:  { \bold{  (n - 1) = 39 }} \:  \:  \\

 \\  \:  \implies \:  { \bold{  n  = 40}} \:  \:  \\

Hence , 40th term is -183

Answered by Anonymous
32

Given -

2nd term of AP sequence = 7

8th term of AP sequence= - 23 .

To Find :-

The term which is equal to -183 .

Solution :-

\underline{\sf{\red{\implies a_n = a_{1} + (n-1)d }}}\\

So, using this formula -

\sf{\implies a_2 = a_1 + d = 7 .......eq \: 1st }\\

\sf{\implies a_8 = a_1 + 7d = - 23....... eq \: 2nd  }\\

Substracting eq 1st from 2nd

\sf{\implies a_1 + 7d -  a_1 - d = -23 - 7 }\\

\sf{\implies 6d = -30  }\\

\sf{\implies d = - \frac{30}{6} \rightarrow -5}\\

Value of common difference is -5 .

Putting this value in eq 1st

\sf{\implies  a_1 - 5  = 7 }\\

\sf{\implies  a_1   = 7 + 5}\\

\sf{\implies  a_1  = 12 }\\

Value of a1 is 12 .

\sf{\implies  -183 = a_1 + (n-1)d }\\

\sf{\implies  -183 = 12 + (n-1)-5}\\

\sf{\implies  -183 = 12 -5n + 5  }\\

\sf{\implies  -183 = 17 - 5n  }\\

\sf{\implies  -183 - 17 =  - 5n  }\\

\sf{\implies  200 = 5n }\\

\sf{\implies  n = \frac{200}{5} \rightarrow 40 }\\

So 40th term of the given AP sequence is - 183.

Similar questions