An army contingent of 616 members is to march behind an army band of 32 members in
a parade. The two groups are to march in the same number of columns. What is the
maximum number of columns in which they can march?
Answers
Answered by
0
Step-by-step explanation:
here is your answer I hope it is helpful
Attachments:
Answered by
11
Given,
Number of army contingent members=616
Number of army band members = 32
If the two groups have to march in the same column, we have to find out the highest common factor between the two groups. HCF (616, 32), gives the maximum number of columns in which they can march.
By Using Euclid’s algorithm to find their HCF, we get,
Since, 616>32, therefore,
616 = 32 × 19 + 8
Since, 8 ≠ 0, therefore, taking 32 as new divisor, we have,
32 = 8 × 4 + 0
Now we have got remainder as 0, therefore, HCF (616, 32) = 8.
Hence, the maximum number of columns in which they can march is 8.
Similar questions