Physics, asked by chiragkkchimnani, 10 months ago

An artificial satellite is moving in a circular orbit of radius
42250 km. Calculate its speed if it takes 24 hours to revolve
around the earth.

Answers

Answered by BrainlyBeast
57

Answer:

The speed of an object moving in a circular orbit is given by formula:

\star\boxed{\green{v=\frac{2\pi r}{t}}}

here,

speed,v = ? (to be calculated)

Radius,r = 42250 km

Time,t = 24 h

Now, putting these values in the above formula we get :

 \implies \: speed =  \frac{2 \times 22 \times 42250}{7 \times 24}  \\  \implies \: speed = 11065.4km {h}^{ - 1}

we can convert this speed from kilometers per hours to kilometers per second by dividing it by the number of seconds in 1 hour (which is 60*60).Thus:

v =   \frac{11065.4}{60 \times 60}  \\  \implies \: v = 3.07km {s}^{ - 1}

Answered by Anonymous
41

Given :

  • An artificial satellite is moving in a circular orbit of radius42250 km.

To Find :

  • Calculate its speed if it takes 24 hours to revolve around the earth.

\setlength{\unitlength}{1.53mm}\begin{picture}(30,20)\linethickness{0.15mm}\put(0,0){\line(1,0){10}}\put(0,0){\line(0,1){20}}\put(0,20){\line(1,0){10}}\put(10,0){\line(0,1){20}}\put(0,16){\oval(2,6)[l]}\put(10,16){\oval(2,6)[r]}\put(-1,17.5){\line(-1,0){1.5}}\put(11,17.5){\line(1,0){1.5}}\put(-1,14.5){\line(-1,0){1.5}}\put(11,14.5){\line(1,0){1.5}}\put(5,0){\oval(8,3)[b]}\put(-2.5,16){\oval(30,8)[l]}\put(12.5,16){\oval(30,8)[r]}\put(-2.5,20){\line(0,-1){8}}\put(12.5,20){\line(0,-1){8}}\put(5,20){\oval(6,4)[t]}\qbezier(-5.75,27)(4.75,18)(15,27)\multiput(1,18)(1.8,0){2}{\line(0,-1){8}}\linethickness{0.3mm}\put(5,3.5){\dashbox{0.1}(4.5,7)[l]}\linethickness{1.5mm}\put(-17.6,40){\line(1,0){44}}\put(-17.6,-7){\line(1,0){44}}\put(3,22.1){\line(1,0){3.5}}\put(2,20){\line(1,0){6}}\put(4.5,35.2){\circle*{2}}\put(0,7){\line(1,0){5}}\put(0,2){\line(1,0){10}}\linethickness{3mm}\multiput(-16.5,17.7)(2.8,0){5}{\line(1,0){2}}\multiput(-16.5,14.3)(2.8,0){5}{\line(1,0){2}}\multiput(13,17.7)(2.8,0){5}{\line(1,0){2}}\multiput(13,14.3)(2.8,0){5}{\line(1,0){2}}\multiput(2,18)(0,-2){5}{\line(0,-1){1}}\put(5.5,5){\line(1,0){3.5}}\put(4.5,17){\circle*{2}}\put(8.5,17){\circle*{2}}\put(4.5,13){\circle*{2}}\put(8.5,13){\circle*{2}}\put(7,9){\circle*{1}}\put(7,7.5){\circle*{1}}\put(8.5,9){\circle*{1}}\put(8.5,7.5){\circle*{1}}\thicklines\put(2,28){\line(1,3){2.5}}\put(6.75,28){\line(-1,3){2.5}}\linethickness{0.3mm}\put(4.75,27.5){\oval(23,1)}\end{picture}

Solution :

Distance covered by the satellite in 24 hours,

s = 2πr

s = 2 × 3.14 × 42250

s = 265464.58 km

Therefore, the speed of satellite :

v = Distance travelled / time taken

v = 265464.58 / 24 × 3600

v = 3.07 km s-¹

Therefore, the speed it takes 24 hours to revolve around the earth is 3.07 kms-¹.

Similar questions