Physics, asked by yajatdalal86, 9 months ago

An artificial satellite is moving in a circular path of radius 42250 km. Calculate it's speed if takes 24 hrs to complete one revolution

Answers

Answered by ruchigupta10081978
0

Answer:

s=1760.3 km/hr

Explanation:

speed= distance/time

s=42250/24

s=1760.4 km/hr

pls mark it as brainlist and follow me

Answered by littleknowledgE
62

\underline{\blacksquare\:\:\:\footnotesize{\red{Artificial\:Satelite}}}

\setlength{\unitlength}{1.53mm}\begin{picture}(30,20)\linethickness{0.15mm}\put(0,0){\line(1,0){10}}\put(0,0){\line(0,1){20}}\put(0,20){\line(1,0){10}}\put(10,0){\line(0,1){20}}\put(0,16){\oval(2,6)[l]}\put(10,16){\oval(2,6)[r]}\put(-1,17.5){\line(-1,0){1.5}}\put(11,17.5){\line(1,0){1.5}}\put(-1,14.5){\line(-1,0){1.5}}\put(11,14.5){\line(1,0){1.5}}\put(5,0){\oval(8,3)[b]}\put(-2.5,16){\oval(30,8)[l]}\put(12.5,16){\oval(30,8)[r]}\put(-2.5,20){\line(0,-1){8}}\put(12.5,20){\line(0,-1){8}}\put(5,20){\oval(6,4)[t]}\qbezier(-5.75,27)(4.75,18)(15,27)\multiput(1,18)(1.8,0){2}{\line(0,-1){8}}\linethickness{0.3mm}\put(5,3.5){\dashbox{0.1}(4.5,7)[l]}\linethickness{1.5mm}\put(-17.6,40){\line(1,0){44}}\put(-17.6,-7){\line(1,0){44}}\put(3,22.1){\line(1,0){3.5}}\put(2,20){\line(1,0){6}}\put(4.5,35.2){\circle*{2}}\put(0,7){\line(1,0){5}}\put(0,2){\line(1,0){10}}\linethickness{3mm}\multiput(-16.5,17.7)(2.8,0){5}{\line(1,0){2}}\multiput(-16.5,14.3)(2.8,0){5}{\line(1,0){2}}\multiput(13,17.7)(2.8,0){5}{\line(1,0){2}}\multiput(13,14.3)(2.8,0){5}{\line(1,0){2}}\multiput(2,18)(0,-2){5}{\line(0,-1){1}}\put(5.5,5){\line(1,0){3.5}}\put(4.5,17){\circle*{2}}\put(8.5,17){\circle*{2}}\put(4.5,13){\circle*{2}}\put(8.5,13){\circle*{2}}\put(7,9){\circle*{1}}\put(7,7.5){\circle*{1}}\put(8.5,9){\circle*{1}}\put(8.5,7.5){\circle*{1}}\thicklines\put(2,28){\line(1,3){2.5}}\put(6.75,28){\line(-1,3){2.5}}\linethickness{0.3mm}\put(4.75,27.5){\oval(23,1)}\end{picture}

\underline{\blacksquare\:\:\:\footnotesize{\red{SolutioN}}}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{1mm}\put(1,1){\line(1,0){6.8}}\end{picture}

\setlength{\unitlength}{2 mm}\begin{picture}(30,20)\thicklines\qbezier(12.95,20)(13.6,26.2)(20,26.86)\qbezier(20,26.86)(26.6,26.2)(26.95,20)\qbezier(26.95,20)(26.27,13.4)(20,12.9)\qbezier(20,12.9)(13.3,13.5)(12.95,20)\put(19.7,19.9){\circle*{0.3}}\linethickness{0.1mm}\qbezier(4.7,20)(19.7,27)(34.7,20)\qbezier(4.7,20)(19.7,14)(34.7,20)\put(19.7,19.9){\vector(0,1){14}}\put(19.7,19.9){\line(0,-1){12}}\put(19.7,19.9){\vector(-1,0){15}}\put(4.7,19.9){\vector(1,0){15}}\put(15,20.3){r}\put(17,24){v}\put(16,23.35){\vector(1,0){1}}\put(24,17.3){\vector(-1,0){1}}\put(30,29){\vector(0,-1){7}}\footnotesize{\put(26,30){Parking Orbit}}\put(27,10){\vector(-1,0){7}}\footnotesize{\put(28,10){Earth Axis}}\end{picture}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{1mm}\put(1,1){\line(1,0){6.8}}\end{picture}

\footnotesize{\text{Let , a artificial satelite of mass}\:\red{m}\:\text{is rounding Earth}}

\footnotesize{\text{and the radius of the parking orbit is}\:\red{r}\:\text{and orbital }}

\footnotesize{\text{velocity is}\:\red{v} .}

\footnotesize{\therefore\:\:\dfrac{mv^2}{r}=\dfrac{GMm}{r^2}}

\footnotesize{\text{If the radius not Earth is}\:\red{R}\:, \:then\:;\:\red{GM=gR^2}}

\footnotesize{\therefore\:\:\dfrac{mv^2}{r}=\dfrac{mgR^2}{r^2}}

\footnotesize{\therefore\:v^2=\dfrac{gR^2}{r}}

\footnotesize{\text{If the Time period of the satelite is}\:\red{T}\:, \:then\:;}

\footnotesize{\red{\:\:v=\dfrac{2\pi r}{T}}}

\footnotesize{\therefore\:\:\dfrac{4\pi^2r^2}{T^2}=\dfrac{gR^2}{r}}

\footnotesize{\implies\:T^2=\dfrac{4\pi^2r^2}{gR^2}}

\footnotesize{\implies\:\bf{\boxed{T=\sqrt{\dfrac{4\pi^2r^2}{gR^2}}}}}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{1mm}\put(1,1){\line(1,0){6.8}}\end{picture}

\footnotesize{\text{Here the Using formula is}\:\:,\:\:\red{v=\dfrac{2\pi r}{T}}}

\footnotesize{\underline{Given}}

\footnotesize{\red{r=42250\:km}}

\footnotesize{\red{T=24\:hours\:=86400\:seconds}}

\footnotesize{\therefore\:v=\dfrac{2\pi \times 42250}{86400}}

\footnotesize{\implies\boxed{\:\red{v=3.074\:km.s^{-1}}}}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

Similar questions