Math, asked by shriya1310, 10 months ago

an easy question from integration ​

Attachments:

Answers

Answered by Anonymous
4

Question

 \rm:  \implies \:  \int \dfrac{(1 + x) ^{3} }{ \sqrt{x} }  \:  \: dx

Solution:-

 \rm:  \implies \:  \int \dfrac{(1 + x) ^{3} }{ \sqrt{x} }  \:  \: dx

Using this identity

 \rm(a + b) {}^{3}  =  { a}^{3}  +  {b}^{3}  + 3ab(a + b)

We get

 \rm  :  \implies \:  \int \dfrac{1 +  {x}^{3} + 3 \times 1 \times x(1 + x) }{ {x}^{ \frac{1}{2} } } \:  \:  dx

\rm  :  \implies \:  \int  \dfrac{(1 + 3x + 3 {x}^{2}  +  {x}^{3} )}{ {x}^{ \frac{1}{2} } }  \:  \: dx

Now split the integration with x

\rm  :  \implies \:  \int  \dfrac{1}{x {}^{ \frac{1}{2} } } dx + 3 \int \dfrac{x}{ {x}^{  \frac{1}{2} } } dx + 3 \int \dfrac{ {x}^{2} }{ {x}^{ \frac{1}{2} } } dx +  \int \dfrac{ {x}^{3} }{ {x}^{ \frac{1}{2} } } dx

 \rm:  \implies \:  \int {x}^{ \frac{ - 1}{2} } dx + 3 \int {x}^{ \frac{1}{2} } dx + 3 \int {x}^{ \frac{3}{2} } dx +  \int {x}^{ \frac{5}{2} } dx

 \rm :  \implies \dfrac{ {x}^{ \frac{ - 1}{2}  + 1} }{ \frac{ - 1}{2}  + 1}  +  \dfrac{ {3x}^{ \frac{1}{2}  + 1} }{ \frac{1}{2}  + 1}  +  \dfrac{ {3x}^{ \frac{3}{2}  + 1} }{ \frac{3}{2}  + 1}  +  \dfrac{ {x}^{ \frac{5}{2} + 1 } }{ \frac{5}{2} + 1 }  + c

 \rm :  \implies \dfrac{ {x}^{ \frac{ 1}{2}  } }{ \frac{  1}{2}  }  +  \dfrac{ {3x}^{ \frac{3}{2}  } }{ \frac{3}{2}  }  +  \dfrac{ {3x}^{ \frac{5}{2}  } }{ \frac{5}{2}  }  +  \dfrac{ {x}^{ \frac{7}{2} } }{ \frac{7}{2}  }  + c

 \rm :  \implies {2x}^{ \frac{1}{2} }  +  {2x}^{ \frac{3}{2} }  +  \dfrac{6}{5}  {x}^{ \frac{5}{2} }  +  \dfrac{2}{7}  {x}^{ \frac{7}{2} }  + c

Answer:-

\rm :  \implies  \boxed{ \rm{2x}^{ \frac{1}{2} }  +  {2x}^{ \frac{3}{2} }  +  \dfrac{6}{5}  {x}^{ \frac{5}{2} }  +  \dfrac{2}{7}  {x}^{ \frac{7}{2} }  + c}

Similar questions