An electric current, i, in amps, is given by i=cos(wt)+sqrt(6)sin(wt) where w≠0 is a constant. what are the maximum and minimum values of i?
Answers
Answered by
10
First we should discuss some mathematical applications
If any equation y = asinФ + bcosФ are given
Then, y =![\bold{\sqrt{a^2+b^2}sin(x+tan^{-1}\frac{b}{a})} \bold{\sqrt{a^2+b^2}sin(x+tan^{-1}\frac{b}{a})}](https://tex.z-dn.net/?f=%5Cbold%7B%5Csqrt%7Ba%5E2%2Bb%5E2%7Dsin%28x%2Btan%5E%7B-1%7D%5Cfrac%7Bb%7D%7Ba%7D%29%7D)
∴ range of y ∈![[-\sqrt{a^2+b^2},\sqrt{a^2+b^2}] [-\sqrt{a^2+b^2},\sqrt{a^2+b^2}]](https://tex.z-dn.net/?f=%5B-%5Csqrt%7Ba%5E2%2Bb%5E2%7D%2C%5Csqrt%7Ba%5E2%2Bb%5E2%7D%5D)
e.g., maximum value of y =![\sqrt{a^2+b^2} \sqrt{a^2+b^2}](https://tex.z-dn.net/?f=%5Csqrt%7Ba%5E2%2Bb%5E2%7D)
and minimum value of y =![-\sqrt{a^2+b^2} -\sqrt{a^2+b^2}](https://tex.z-dn.net/?f=-%5Csqrt%7Ba%5E2%2Bb%5E2%7D)
now use above application to solve this problem ,
Given I = cosωt + √6sinωt
∴ I =![\bold{\sqrt{1^2+\sqrt{6}^2}sin(\omega t + tan^{-1}\frac{1}{\sqrt{6}})}} \bold{\sqrt{1^2+\sqrt{6}^2}sin(\omega t + tan^{-1}\frac{1}{\sqrt{6}})}}](https://tex.z-dn.net/?f=%5Cbold%7B%5Csqrt%7B1%5E2%2B%5Csqrt%7B6%7D%5E2%7Dsin%28%5Comega+t+%2B+tan%5E%7B-1%7D%5Cfrac%7B1%7D%7B%5Csqrt%7B6%7D%7D%29%7D%7D)
Hence, maximum value of I = √7
Minimum value of I = -√7
If any equation y = asinФ + bcosФ are given
Then, y =
∴ range of y ∈
e.g., maximum value of y =
and minimum value of y =
now use above application to solve this problem ,
Given I = cosωt + √6sinωt
∴ I =
Hence, maximum value of I = √7
Minimum value of I = -√7
Similar questions