Physics, asked by dp9979190452, 7 months ago

An electric heater consumes 4,4 kW power when connected with a 220 V line voltage then,
current
6)
Calculate the current passing through the heater.
Calculate the energy consumed in 2 hours.
(iii) Calculate resistance of a heater.​

Answers

Answered by BrainlyRonaldo
22

Given

An electric heater consumes 4.4 kW power when connected with a 220 V line voltage

To Find

(i) Calculate the current passing through the heater

(ii) Calculate the energy consumed in 2 hours

(iii) Calculate resistance of a heater

Solution

Given that

An electric heater consumes 4.4 kW power when connected with a 220 V line voltage

Hence

Power (P) = 4.4 kW = 4.4 x 1000 W

Voltage (V) = 220 V

(i)

\rm \longrightarrow I=\dfrac{P}{V}

Here

  • I = current
  • P = power
  • V = voltage

\rm \longrightarrow I=\dfrac{4.4 \times 1000}{220} \ A

\rm \longrightarrow I=20 \ A

(ii)

\rm \longrightarrow E=I^{2}Rt

Here

  • E = energy
  • I = current
  • R = resistance
  • t = time

\sf \longrightarrow E=(20)^{2} \times 11 \times 2 \times 60 \times 60x^{2} \ J

\sf \longrightarrow E=400 \times 11 \times 7200 \ J

\sf \longrightarrow E=4400\times 7200 \ J

\sf \longrightarrow E=31680000 \ J

\sf \longrightarrow E=3.168 \times 10^{7} \ J

(iii)

\rm \longrightarrow R=\dfrac{V}{I}

Here

  • R = resistance
  • V = voltage
  • I = current

\rm \longrightarrow R=\dfrac{220}{20} \ \Omega

\rm \longrightarrow R=11 \ \Omega

Answered by DARLO20
56

GIVEN :-

  • Aɴ ᴇʟᴇᴄᴛʀɪᴄ ʜᴇᴀᴛᴇʀ ᴄᴏɴsᴜᴍᴇs 4.4 ᴘᴏᴡᴇʀ .

  • Tʜᴇ ᴇʟᴇᴄᴛʀɪᴄ ʜᴇᴀᴛᴇʀ ᴄᴏɴɴᴇᴄᴛᴇᴅ ᴡɪᴛʜ ᴀ 220V ʟɪɴᴇ ᴠᴏʟᴛᴀɢᴇ .

TO FIND :-

  1. Tʜᴇ ᴄᴜʀʀᴇɴᴛ ᴘᴀssɪɴɢ ᴛʜʀᴏᴜɢʜ ᴛʜᴇ ʜᴇᴀᴛᴇʀ .
  2. Tʜᴇ ᴇɴᴇʀɢʏ ᴄᴏɴsᴜᴍᴇᴅ ɪɴ 2 ʜʀs .
  3. Tʜᴇ ʀᴇsɪsᴛᴀɴᴄᴇ ᴏғ ʜᴇᴀᴛᴇʀ .

SOLUTION :-

[1]

\huge\blue\star \bf\pink{Current(I)\:=\:\dfrac{Power(P)}{Voltage(V)}\:}

ᴡʜᴇʀᴇ,

  • \bf\red{P} = 4.4 KW = 4.4 × 1000 = 4400W

  • \bf\red{V} =220 V

➳ Current(I) = 4400/220

➳ Current(I) = 20 A

\huge\red\therefore Tʜᴇ ᴄᴜʀʀᴇɴᴛ ᴘᴀssɪɴɢ ᴛʜʀᴏᴜɢʜ ᴛʜᴇ ʜᴇᴀᴛᴇʀ is "20A" .

__________________________

[2]

\huge\gray\star \bf\pink{Energy(E)\:=\:I^2\:R\:t\:}

ᴡʜᴇʀᴇ,

  • \bf\red{I} = 20 A

  • \bf\red{R} = V/I = 220/20 = 11 Ω

  • \bf\red{t} = 2hrs = 2 × 60 × 60 = 72 s

➳ Energy (E) = (20)² × 11 × 72

➳ Energy (E) = 400 × 792

➳ Energy (E) = 316800 J

\huge\red\therefore Tʜᴇ ᴇɴᴇʀɢʏ ᴄᴏɴsᴜᴍᴇᴅ ɪɴ 2 ʜᴏᴜʀs is "316800J" .

__________________________

[3]

\huge\purple\star \bf\pink{Resistance(R)\:=\:\dfrac{V}{I}\:}

ᴡʜᴇʀᴇ,

  • \bf\red{I} = 20 A

  • \bf\red{V} = 220 V

➳ Resistance(R) = 220/20

➳ Resistance(R) = 11 Ω

\huge\red\therefore Tʜᴇ ʀᴇsɪsᴛᴀɴᴄᴇ ᴏғ ʜᴇᴀᴛᴇʀ is "11Ω" .

__________________________

Similar questions