Math, asked by jaydeeppoddar6844, 9 months ago

An electric pole 14m high cast a shadow of 10m find High of a tree that cast a shadow of 15m under similar conditions

Answers

Answered by BrainlyConqueror0901
3

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Height\:of\:tree=21\:m}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given:}} \\  \tt: \implies Height\: of \: pole = 14 \: m \\  \\  \tt:   \implies Shadow \: of \: pole = 10\: m \\  \\  \tt:  \implies Shadow \: of \: tree = 15 \: m \\  \\ \red{\underline \bold{To \: Find:}} \\  \tt:  \implies Height \: of \: tree = ?

• According to given question :

 \circ \:  \tt{Let \: angle \: of \: elevation \: for \: both \: pole \: and \: tree \: be \:  \beta } \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies tan \:  \beta =  \frac{Perpendicular}{Base}  \\  \\  \tt:  \implies tan \:  \beta=  \frac{14}{10}  \\  \\ \tt:  \implies tan \:  \beta = 1.4 \\  \\  \bold{For \: tree : } \\   \tt:  \implies tan \:  \beta =  \frac{Perpendicular}{Base}  \\  \\  \tt:  \implies 1.4 =  \frac{h}{15}  \\  \\   \tt:  \implies 1.4 \times 15 = h \\  \\ \green{\tt:  \implies h = 21 \: m} \\  \\   \green{\tt \therefore Height \: of \: tree \: is \: 21 \: m}

Similar questions