Math, asked by hemant1460, 11 months ago

an electric pole cast a shadow of length 20 m at a time when a tree 6 m high casts a shadow of length 8 m.Find the height of the pole.

Answers

Answered by Anonymous
143

Given:-

An electric pole casts a shadow of 20 m.

Height of tree = 6 m.

Tree casts a shadow of length = 8 m.

Find:-

Height of the electric pole.

Solution:-

Let height of electric pole be "h" m.

\underbrace{\sf{Shadow\:=\:20\:m\:and\:height\:=\:h\:m}}_{\sf{for\:electric \:pole}}

\underbrace{\sf{Shadow \:=\:8\:m\:and\:height\:=\:6\:m}}_{\sf{for\:tree}}

Now, for tree and electric pole..

=> Height : Shadow

=> \sf{6\: :\: 8}

=> \sf{h\: :\: 20}

Cross-multiply them

=> \sf{6 \:\times\: 20 \:=\: h \:\times\: 8}

=> \sf{120\: = \:8h}

=> \sf{8h\: =\: 120}

=> \sf{h \:=\:\frac{ 120}{8}}

=> \sf{h \:= \:15}

•°• Height of electric pole is 15 m.


Anonymous: Keep Going
Answered by Anonymous
165

\bold{\underline{\underline{Answer:}}}

Height of the pole = 15 m

\bold{\underline{\underline{Step\:-\:by\:-step\:explanation:}}}

Given :

  • An electric pole cast a shadow of length 20 m (AC)
  • A tree 6 m high (ED)
  • Shadow casted by tree is 8 m (EC)

To find :

  • Height of the pole (AB)

Solution :

In Δ ABC and Δ EDC,

\bold{\frac{AB}{ED}} = \bold{\frac{\:\:\:\:BC}{\:\:\:\:DC}} = \bold{\frac{\:\:\:\:AC}{\:\:\:\:EC}}\bold{\underbrace{\sf{Corrseponding\:sides\:of\:triangle}}}

In the above pairs of corresponding sides, we have the values of \bold{\frac{AB}{ED}} and \bold{\frac{AC}{EC}}, which implies that we are in no need for the second pair, \bold{\frac{BC}{DC}}

•°• Substituting the values of AB, ED, AC and EC ,

\bold{\frac{AB}{ED}} = \bold{\frac{AC}{EC}}

\bold{\frac{x}{6}} = \bold{\frac{20}{8}}

Cross multiplying,

\bold{x\times\:8\:=\:20\times\:6}

\bold{8x\:=\:120}

\bold{x=\frac{120}{8}}

\bold{x\:=\frac{30}{2}}

\bold{x=15}

•°• Height of the pole = 15 m

Attachments:

Anonymous: Good
Similar questions