Physics, asked by amipatel6062, 11 months ago

An electromagnetic wave of electric field E = 10 sin (ωt — kx)N/C is incident normal to the cross-sectional area of a cylinder of l0 cm² and having length 100 cm, lying along X-axis. Find (a) the energy density, (b) energy contained in the cylinder, (c) the intensity of the wave, (d) momentum transferred to the cross—sectional area of the cylinder in 1 s, considering total absorption, (e) radiation pressure.[Take : ε₀=8.854*10⁻¹² C² N⁻¹ m⁻², c=3*10⁸ ms⁻¹] [Ans: (a) 4.427*10⁻¹⁰ J m⁻³, (b) 4.427*10⁻¹³ J, (c) 1.3278*10⁻¹ Wm⁻² (d) 1.475*10⁻²¹ N (e) 1.475*10⁻¹⁸ N m⁻².]

Answers

Answered by sushiladevi4418
1

Answer:

(a) Energy \ density = 4.425 \times 10^{-10} \ Jm^{-3}

(b)  Energy = 4.425 \times 10^{-13}

(c)  Intensity = 0.13275 \ \frac{W}{m^{2}}

(d) Momentum = 4.425 \times 10^{-10} \ N-s

(e)  Radiation \ pressure = 4.425 \times 10^{-10} pa

Explanation:

As per the question,

Given electric field E = 10 sin (ωt — kx)N/C

E_{0} = 10 \frac{V}{m}

cross sectional area = 10 cm-square  

Length = 100 cm

Therefore,

Volume = area × length

= 10 × 100 = 1000 cm-cube

∴ Volume =  10^{-3} \ m^{3}

(a) Formula used for electric density of an electromagnetic wave :

Energy \ density= \frac{1}{2} \epsilon_{0}E_{0}^{2}

where  \epsilon_{0} = 8.85 \times 10^{-12}

on putting the values we get,

Energy density  = 4.425 \times 10^{-10} \ Jm^{-3}

(b) Energy contained in the cylinder is given by:

U = energy density × volume of the cylinder

Put the value of volume and energy density in this formula we grt,

U = 4.425 \times 10^{-10} \ Jm^{-3} \times 10^{-3} \ m^{3}

 U = 4.425 \times 10^{-13}

(c) The intensity of the wave is given by :

I =energy density × speed of wave

where speed of wave  = 3 \times 10^{8} \frac{m}{s}

 I = 4.425 \times 10^{-10} \ Jm^{-3} \times 3 \times 10^{8} \frac{m}{s}

 I = 0.13275 \ \frac{W}{m^{2}}

(d) Momentum transferred to the cross—sectional area of the cylinder in 1 s, considering total absorption is given by :

Momentum = energy density × cross section

 Momentum = 4.425 \times 10^{-10} \ Jm^{-3} \times 10 \times 10^{-4}

Momentum = 4.425 \times 10^{-10} \ N-s

(e) Radiation pressure is given by:

 Radiation \ pressure = \frac{Intensity}{Speed of the wave}

 Radiation \ pressure = \frac{0.13275 \ \frac{W}{m^{2}}}{3 \times 10^{8} \frac{m}{s}}

 Radiation \ pressure = 4.425 \times 10^{-10} pa

Similar questions