Physics, asked by kharbikarkomal, 11 months ago


An electron has a mass 9.108x10^-31 kg and
velocity 0.6x10^8 m/s.Calculate the
wavelength of the electron.​

Answers

Answered by ShivamKashyap08
10

\huge{\bold{\underline{\underline{....Answer....}}}}

\huge{\bold{\underline{Given:-}}}

  • Mass of electron = 9.1 × 10^-31 Kg.
  • Velocity of electron (v) = 0.6 × 10 m/s.

\huge{\bold{\underline{Explanation:-}}}

\rule{300}{1.5}

\large{\boxed{ \tt \lambda = \dfrac{h}{mv}}}

Substituting the values,

\large{\tt \lambda = \dfrac{6.626 \times 10^{-34}}{ 9.1 \times 10^{-31} \times 0.6 \times 10^8}}

Note:-

\large{\tt h = Planck's \: constant}

Now,

\large{\tt \lambda = \dfrac{6.626 \times 10^{-34}}{9.1 \times 0.6 \times 10^{-31+8}}}

\large{\tt \lambda = \dfrac{6.626 \times 10^{-34}}{5.46 \times 10^{-23}}}

It comes as,

\large{\tt \lambda = \dfrac{6.626 \times 10^{-34 + 23}}{5.46}}

\large{ \tt \lambda = \dfrac{6.626 \times 10^{-11}}{5.46}}

\huge{\boxed{\boxed{\tt \lambda = 1.21 \times 10^{-11} \: meters }}}

So, the wavelength of electron is 1.21 × 10^{-11} meters .

\rule{300}{1.5}

\rule{300}{1.5}

Additional formulas:-

  • \large{\tt \lambda = \dfrac{h}{p}}
  • \large{\tt \lambda = \dfrac{h}{ \sqrt{2(K.E)m}}}
  • \large{\tt \lambda = \dfrac{h}{ \sqrt{2meV}}}

Note:-

  • \large{\tt p = momentum}
  • \large{\tt m = Mass \: of \: electron}
  • \large{\tt V = Potential \: difference}
  • \large{\tt e = charge \: of \: electron}
  • \large{\tt h = Planck's \: constant}

Values:-

  • \large{\tt e = 1.6 \times 10^{-19} C}
  • \large{\tt h = 6.26 \times 10^{-34} \:  Js}
  • \large{\tt m= 9.108 \times 10^{-31} \: Kg}

\rule{300}{1.5}

Similar questions