Chemistry, asked by Niwwen7494, 10 months ago

An electron in nth orbit of h atom requires 2.856e.v of energy to go to (n+3)th orbit then calculate n

Answers

Answered by Draxillus
0

Given

  • Electron is in  n^{th} orbit.

  • 2.856 eV of energy is required to excite to the  {(n+3)}^{th}

To Find

The value of n.

Concept

The value of energy needed to excite an atom from a lower orbital to a higher orbital is the difference of the energy of each orbital.

Also, Energy of  n^{th} orbit of a hydrogen atom( Z = 1) is given by  \frac{ - 13.6}{ {n}^{2} } .

Calculation

Energy of  n^{th} + 2.856 = Energy of  {n +3}^{th}

=>  \frac{ - 13.6}{ {n}^{2} } + 2.856 =  \frac{ - 13.6}{ {(n+3)}^{2} } .

=> 2.856 = 13.6 (  \frac{1}{ {n}^{2} }  -  \frac{1}{ {(n + 3)}^{2} } )

=> 2.856 = 13.6 (    \frac{( {n + 3)}^{2} -  {n}^{2}  }{ { {n}^{2}  + 3n} } )

=> 0.21 = (    \frac{( {n + 3)}^{2} -  {n}^{2}  }{ { {n}^{2}  + 3n} } )

=> 0.21 =

  \frac{(  {n}^{2}  + 6n + 9 -  {n}^{2}  )}{ { {n}^{2}  + 3n} }  \\  \\  =  > 0.21 =  \frac{6n + 9}{ {n}^{2} + 3n }  \\  \\  =  > 0.7 =  \frac{2n + 3}{ {n}^{2} + 3n }  \\  \\  =  > 7( {n}^{2}  + 3n) = 10(2n + 3) \\  \\  =  > 7 {n}^{2}  + 21n = 20n + 30 \\  \\  =  > 7 {n}^{2}  + n - 30 = 0 \\  \\  =  > 7 {n}^{2}   -  14n + 15n - 30 = 0 \\  \\  =  > 7n(n - 2) + 15(n - 2) \\  \\  =  > (7n + 15)(n - 2) = 0 \\  \\  =  > n - 2 = 0 \\  \\  =  > n = 2

 \boxed{ \green{Hence,\:the\:value\:of\:n\:is\:2} }

Similar questions