Physics, asked by raghuwanshi1405, 1 year ago

.An electron initially at rest falls a distance of 1.5 cm
in a uniform electric field of magnitude 2 x 104 N/C.
The time taken by the electron to fall this distance is

Answers

Answered by Anonymous
6

\underline{ \boxed{ \bold{ \mathfrak{ \huge{ \purple{Answer}}}}}}

Given :

distance travelled= 0.015 m

electric field intensity = 2×10^4 N/C

initial velocity = 0 m/s

To Find :

Time taken by the electron to fall this distance is..

Formula :

 \dag \rm \:  \blue{net \: force  = electrical \: force} \\  \\  \therefore \rm \: ma = qE \\   \\  \therefore \:  \underline{ \boxed{ \bold{ \rm{ \pink{a =  \frac{qE}{m} }}}}} \\  \\  \dag \rm \: kinematic \: equation... \\  \\  \underline{ \boxed{ \bold{ \rm{ \blue{d = ut +  \frac{1}{2} a {t}^{2} }}}}} \\  \\  \dag \rm \: mass \: of \: electron = 9.109 \times  {10}^{ - 31}  \: kg

Calculation :

 \rm :\implies \: a =  \frac{qE}{m}  =  \frac{1.6 \times  {10}^{ - 19}  \times 2 \times  {10}^{4} }{9.109 \times  {10}^{ - 31} }  \\  \\  \therefore \:   \underline{  \rm\boxed{\red{a = 3.5 \times  {10}^{16}  \:  \frac{m}{ {s}^{2} } }}} \\  \\   :  \implies \rm \: d =  \frac{1}{2} a {t}^{2}  \:  \:  \:  \: ( \because \: u = 0) \\  \\  \therefore \rm \: 0.015 =  \frac{1}{2} \times  3.5 \times  {10}^{16}  \times  {t}^{2}  \\  \\  \therefore \rm \:  t =  \sqrt{ \frac{0.015 \times 2}{3.5 \times  {10}^{16} } }  =  \sqrt{8.57 \times  {10}^{ - 19} }  \\  \\  \therefore \:  \underline{ \boxed{ \bold{ \rm{ \orange{t = 0.92 \: nS}}}}}

Similar questions