Chemistry, asked by Anonymous, 3 months ago

.
An element A (atomic mass 150) having bcc structure has unit cell edge length of 400 pm.
Calculate the density and number of unit cells in 7.78 g of A.​

Answers

Answered by mad210220
2

Given:

Atomic mass = 150g/mol , Edge length(a) = 400pm, Given mass = 7.78g

To find:

Density and number of unit cells

Solution:

  • We know for a BCC structure Number of Atoms per unit cell (Z) = 2

  • Now density(d) =   \frac{ZM}{a^{3}N_{A}   }    ⇒ d =   \frac{2*150}{(400*10^{-10})^{3} *(6.022*10^{23})  } = 7.8125g/cm³

         d = 7.8g/cm³

  • Now for number of unit cell,

  • No. of atoms = (given mass / molar mass)×Na

                      = (7.78÷150)×(6.022×10^{23}) ⇒ 3.12×10^{22} atoms

 

  • No. of unit cell =  \frac{No. of atoms }{No. of atoms per unit cell(Z)}    = \frac{3.12*10^{22} }{2} = 1.56×10^{22}

  • So density(d) = 7.8g/cm³  and no. of unit cell present = 1.56×10^{22}

Similar questions