Chemistry, asked by rinmawiiralte, 5 months ago

an element atomic mass 50 having fcc structure has a density of 5.7 g/cm^3. What is the edge length of the unit cell?​

Answers

Answered by DarshanBikashSaikia
1

Answer:

a3×Z×MN0×ρ=4×606.02×1023×6.23

a=400 pm

Explanation:

Answered by Bᴇʏᴏɴᴅᴇʀ
6

Answer:-

\red{\bigstar} Edge length \large\leadsto\boxed{\rm\pink{389 \: pm}}

Given:-

Atomic mass of an element 50 with fcc structure and density 5.7 g/cm³.

To Find:-

Edge length of the unit cell.

Solution:-

We know,

\underline{\boxed{\sf\purple{Density \: of \: unit \: cell = \dfrac{z \times M}{N \times a^3}}}}

here,

\bf{\rho} = Density of unit cell

z = Number of atoms present in one unit cell

M = Atomic mass

N = Avogadro's number

a = Edge length

Substituting in the values:-

\sf (a)^3 = \dfrac{z \times M}{N \times \rho}

\sf (a)^3 = \dfrac{4 \times 50}{6.02 \times 10^{23} \times 5.7}

\sf (a)^3 = \dfrac{200}{6.02 \times 10^{23} \times 5.7}

\sf (a)^3 = \dfrac{200}{34.314 \times 10^{23}}

\sf (a)^3 = 5.89 \times 10^{-23}

\sf (a)^3 = 58.9 \times 10^{-24}

\sf a = \sqrt{58.9 \times 10^{-24}}

\bf a = 3.89 \times 10^{-8} \: m

\bf a = 389 \times 10^{-10} \: m

We know,

\boxed{\bf\red{1 \: pico meter = 10^{-10}m}}

Hence,

\large\boxed{\bf\green{389 \: pm}}

Therefore, the edge length of the unit cell is 389 pm.

Similar questions