Physics, asked by eshita0401, 8 months ago


an element forms bcc crystal the unit cell edge length is 260pm.calculate the density.
molar mass is 23g/mol​

Answers

Answered by Anonymous
3

Given:

Type of unit cell = bcc crystal

Edge length (a) = 260 pm =  \sf 260 \times 10^{-10} \ cm

Molar mass (M) = 23 g/mol

To Find:

Density (ρ)

Answer:

Number of atoms in bcc crystal (Z) = 2

Density of unit cell:

 \boxed{ \boxed{ \bf{ \rho  =  \dfrac{Z \times M}{N_0  \times {a}^{3} } }}}

 \sf N_0 \longrightarrow Avogadro's constant ( \sf 6.02 \times 10^{23}

By substituting values we get:

 \rm \implies \rho  =  \dfrac{2 \times 23}{6.02 \times  {10}^{23}   \times {(260 \times  {10}^{ - 10} )}^{3} }  \\  \\  \rm \implies \rho  =  \dfrac{2 \times 23}{6.02 \times  {10}^{23}   \times {(2.6 \times  {10}^{ - 8} )}^{3} }  \\  \\  \rm \implies \rho  =  \dfrac{2 \times 23}{6.02 \times  {10}^{23}   \times 17.576 \times  {10}^{ - 24}  }  \\  \\ \rm \implies \rho  =  \dfrac{2 \times 23}{105.8 \times  {10}^{23 - 24}   }  \\  \\ \rm \implies \rho  =  \dfrac{ 46}{105.8 \times  {10}^{ - 1}   }  \\  \\ \rm \implies \rho  =  \dfrac{ 46}{10.5  } \\  \\   \rm \implies \rho  = 4.35 \: g {cm}^{ - 3}

 \therefore  \boxed{\mathfrak{Density \ (\rho) = 4.35 \ g/cm^3}}

Similar questions