An element has a body-centred cubic (bcc) structure with a cell edge of
288 pm. The density of the element is 7.2 g/cm³. How many atoms are present in 208 g of the element?
Answers
Answer :
Volume of the unit cell = (288 pm)³
Volume of the unit cell
Volume of the unit cell
Volume of the unit cell
Volume of 208 g of the element
=
Number of unit cells in this volume
=
Since each bcc cubic unit cell contains 2 atoms, therefore, the total number
of atoms in 208 g = 2 (atoms/unit cell) × 12.08 × 10²³ unit cells
= 24.16×10²³ atoms
I hope it helps you ❤️✔️
Answer:
Volume of the unit cell = (288 pm)³
Volume of the unit cell \sf = (288×10^{-12} m)³ =(288×10
−12
m)³
Volume of the unit cell \sf= (288×10^{-10} cm)³ =(288×10
−10
cm)³
Volume of the unit cell \sf= 2.39×10^{-23} cm³ =2.39×10
−23
cm³
Volume of 208 g of the element
= \begin{gathered} \sf \frac{mass}{density} = \frac{208 \: \: g}{7.2 \: \: g \: \: cm^{-3}} = 28.88 \: \: cm³ \\ \end{gathered}
density
mass
=
7.2gcm
−3
208g
=28.88cm³
Number of unit cells in this volume
= \begin{gathered} \sf \frac{28.88 \: \: cm³}{2.39 × 10^{-23} \: \: cm³ / unit \: \: cell } = 12.08 × 10²³ unit cell \\ \end{gathered}
2.39×10
−23
cm³/unitcell
28.88cm³
=12.08×10²³unitcell
Since each bcc cubic unit cell contains 2 atoms, therefore, the total number
of atoms in 208 g = 2 (atoms/unit cell) × 12.08 × 10²³ unit cells
= 24.16×10²³ atoms
I hope it helps you