Chemistry, asked by Josephantonio, 10 months ago

An element has a body centred cubic structure with cell edge of 288 pm. The density of the element is 7.2 g/cm3. How many atoms are present in 208 g of the element.​

Answers

Answered by MajorLazer017
24

Answer :

  • No. of atoms present in 208 g of the element = 24.17 × 10²³ atoms.

Step-by-step explanation :

Given that,

  • Edge length of unit cell, a = 288 pm = \bold{288\times{}10^{-10}\:cm}

  • Density of the element, \bold{\rho=7.2\:g/cm^3}

\hrulefill

For BBC structure, Z = 2

Now, we know, \bold{\rho=\dfrac{Z\times{}M}{a^3\times{}N_0}}

Substituting the values in the expression, we get,

\bold{7.2\:g\:cm^{-3}=\dfrac{2\times{}M}{(288\times{}10^{-10}\:cm)^3\times{}(6.02\times{}10^{23}\:mol^{-1})}}

or \bold{M=51.8\:g\:mol^{-1}}

By mole concept, 51.8 g of the element contains = 6.02 × 10²³ atoms.

∴ 208 g of the element contains,

\implies\bold{\dfrac{6.02\times{}10^{23}}{51.8}\times{}208\:atoms}

\implies\bold{24.17\times{}10^{23}\:atoms\:(Ans.)}

Answered by Anonymous
146

Given :

An element has BCC structure

Edge, a=288pm

Density of element , d =7.2 g/cm³

To find ;

How many atoms are present in 208 g of the element.

Theory :

•BCC (body centred cubic structure)

  1. 8 corner atoms contribute one atom per unit cell.
  2. Centre atom contributes one atom per unit cell.
  3. So, Total 1+1=2 atoms per unit cell

\bf\:Z_{effective}=8\times\frac{1}{8}

•Density of unit cell

\sf\:Density=\dfrac{mass\:of\:unit\: cell}{Volume\:of\:unit\:cell}

\implies\:\sf\:Density=\dfrac{ZM}{a{}^{3}N_{A}}

where , \sf\:N_{A}=Avaogadro\:Number

and M=molar mass

and \sf\:Z=Z_{effective}

Solution:

Volume of unit cell =a{}^{3}

=\sf\:(288\times\:10{}^{-12}){}^{3}

=2.39\times10{}^{-23}\:cm{}^{3}

We know that for BCC structure

\sf\:Z_{effective}=2

\sf\:Density=\dfrac{ZM}{a{}^{3}N_{a}}

Now put the values

 \implies \sf 7.2 =  \frac{2 \times M}{(288 \times 10 {}^{ - 12}) {}^{3} \times 6.023 \times 10 {}^{23}   }

 \implies \sf 7.2 =  \frac{ \cancel{2} \times M}{2.39 \times 10 {}^{ - 23} \times  \cancel{6}  \times 10 {}^{23} }

 \implies \sf 7.2 =  \frac{M\times  \cancel{10 {}^{23}} }{2.39 \times 3 \times  \cancel{10 {}^{23} }}

 \implies \sf M = 7.2 \times 2.39 \times 3  \: g

 \implies \sf M =51.62g

By mole concept,51.62 g element contains =N_{A}atoms

 \implies  \sf288g \: element \: contains =  \frac{6.023 \times 10 {}^{23} \times 288 }{51.6}

\implies\:\sf\:288g\:element\:contains=2.41\times10{}^{24}\: atoms

Attachments:
Similar questions