An element having adormic mass 60 has face centred
cubic unit cells. The edge length of the unit cell is
400 pm. Find out density of the element.
Answers
Explanation:
Edge length of unit cell = 400pm = 400\times 10^{-10}400×10
−10
cm
Atomic mass of the element = 60
Volume of unit cell = (400\times 10^{-10})^3 = 64\times 10^{-24}cm^3(400×10
−10
)
3
=64×10
−24
cm
3
To find:
Density of the element = ?
Formula to be used:
Mass of 1 atom = \frac{Atomic mass}{Avogadro number}Massof1atom=
Avogadronumber
Atomicmass
Density = \frac{Mass}{Volume}Density=
Volume
Mass
Calculation:
Unit cell mass =
Number of atoms in the unit cell = \frac{Unit cell mass}{Mass of each atom}
Massofeachatom
Unitcellmass
Number of atom in fcc unit cell = 8\times\frac{1}{8}+6\times\frac{1}{2}8×
8
1
+6×
2
1
Number of atom in fcc unit cell = 4
Mass of one atom = \frac{Atomic mass}{Avogadro number}
Avogadronumber
Atomicmass
Mass of one atom = \frac{60}{6.023\times10^{23}}
6.023×10
23
60
Mass of four atom = \frac{4\times60}{6.023\times10^{23}}
6.023×10
23
4×60
Density of unit cell = \frac{Mass}{Volume}
Volume
Mass
\frac{4\times60}{6.023\times10^{23}}
6.023×10
23
4×60
\times× \frac{1}{64\times10^{-24}}
64×10
−24
1
Density of unit cell = 6.2gcm^{-3}6.2gcm
−3
Conclusion:
The density of the element is found to be 6.2gcm^{-3}6.2gcm
−3
Explanation:
A fcc element (atomic mass = 60 ) has a cell edge of 400 pm