Chemistry, asked by Anonymous, 9 months ago

An element X exists in two isotopic forms with atomic masses 11 u and 13 u respectively with average atomic mass of 12.5 u. The percentage abundance of the isotope with atomic mass 11 is

Answers

Answered by RISH4BH
99

\large{\underline{\underline{\red{\tt{\purple{\leadsto } GiveN:-}}}}}

  • A element X exists in two isotopic forms.
  • Atomic mass of one isotope is 11u.
  • Atomic mass of second isotope is 13u.
  • Average Atomic mass is 12.5u .

\large{\underline{\underline{\red{\tt{\purple{\leadsto } To\:FinD:-}}}}}

  • The percentage of abundance of isotope with atomic mass 11.

\large{\underline{\underline{\red{\tt{\purple{\leadsto } FormulA\:UseD:-}}}}}

We can calculate Average atomic mass as ,

\large\pink{\underline{\boxed{\purple{\tt{\dag Atomic\:mass_{average}=\dfrac{(Abundance\%)\times(Mass_{X_1})+(Abundance\%)\times(Mass_{X_2})}{100} }}}}}

\large{\underline{\underline{\red{\tt{\purple{\leadsto } AnsweR:-}}}}}

Let the average atomic mass of first isotope be x% , then the percentage of second isotope will be (100-x)%.

Now , Let the first Isotope be denoted by \sf X_1 with mass 11u and second by \sf X_2 with mass 13u.

Now , put the respective values in above formula stated :

\tt:\implies Atomic\:mass_{avg.}=\dfrac{ (Abundance\%)\times(Mass_{X_1})+(Abundance\%)\times(Mass_{X_2})}{100}

\tt:\implies 12.5u=\dfrac{x\times11u+(100-x)\times13u}{100}

\tt:\implies 12.5\times100=11x+1300-13x

\tt:\implies1250=-2x+1300

\tt:\implies 2x = 1300-1250

\tt:\implies2x=50

\tt:\implies x=\dfrac{50}{2}

\underline{\boxed{\red{\tt\longmapsto \:\:x\:\:=\:\:25\%}}}

\orange{\boxed{\green{\bf \dag Hence\: percentage\:of\:X_1\:is\:25\%.}}}

Similar questions