Physics, asked by pinky26sethi, 1 year ago

An elevator can carry a maximum load of 1800kg, is moving up with a constant speed of 2m/s. The frictional force opposing the motion is 4000N. Determine the maximum power delivered by the motor to the elevator in watt as well as in horse power.

Answers

Answered by suppergaints
7

Answer:

59hp

Explanation:

hence frictional force and force of motion is acting downward

(net{force}) = mg + f \\  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = (1800kg)(10) + 4000 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 22000

power = 22000 \times 2ms ^{ - }{1 }  \:  \:  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = 44000watt

hence power of the motor =44000watt =59hp

Answered by Anonymous
63

Explanation:

\Large{\red{\underline{\underline{\sf{\blue{Given:}}}}}}

\sf Mass,\:m\:=\:1800kg

\sf Frictional\:force,\:f\:=\:4000N

\sf Uniform\:speed,\:v\:=\:2.0ms^{-1}

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\Large{\blue{\underline{\underline{\sf{\red{To\:find:}}}}}}

\sf Power\:(in\:watt\:and\:horse\:power)

 ‎ ‎ ‎ ‎ ‎ ‎

\Large{\red{\underline{\underline{\sf{\pink{Solution:}}}}}}

\sf Downward\:force\:on\:elevator\:is

 ‎ ‎ ‎ ‎ ‎ ‎

\sf F\:=\:mg+f

 ‎ ‎ ‎ ‎ ‎ ‎

\sf \quad=\:1800\times 10+4000=22000N

 ‎ ‎ ‎ ‎ ‎ ‎

\sf The\:motor\:must\:supply\:enough\:force\:to\:balance\:this\:force\:as

\sf P\:=\:F\times v

 ‎ ‎ ‎ ‎ ‎ ‎

\sf \therefore P\:=\:22000 \times 2\:=\:44000\:watt

 ‎ ‎ ‎ ‎ ‎ ‎

\sf P\:=\:\dfrac{44000}{746}h.p\:=\:59h.p

Similar questions