Math, asked by aditikushwaha2800, 1 month ago

An elevator descends into a mine shaft at the rate of 7m/min. If

the descent starts from 5m above the ground level, how long will it

take to reach -205 m?​

Answers

Answered by prabhatrbi
1

Answer:

\green{\tt{\therefore{Time=70\:min}}}∴Time=70min

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}Step−by−stepexplanation:

\begin{gathered}\green{\underline \bold{Given : }} \\ \tt: \implies Initial \: speed = 7 \: m/min \\ \\ \tt: \implies Total \: distance = 490 \: m \\ \\ \red{\underline \bold{To \: Find : }}\\ \tt: \implies Time \: taken = ?\end{gathered}Given::⟹Initialspeed=7m/min:⟹Totaldistance=490mToFind::⟹Timetaken=?

• According to given question :

\begin{gathered} \tt \circ \: Acceleration = 0 \: {ms}^{2} \\ \\ \bold{As \: we \: know \: that} \\ \tt: \implies s = ut + \frac{1}{2} a {t}^{2} \\ \\ \tt: \implies 490 = 7 \times t + \frac{1}{2} \times 0 \times {t}^{2} \\ \\ \tt: \implies 490 = 7 \times t \\ \\ \tt: \implies t = \frac{490}{7} \\ \\ \green{\tt: \implies t = 70 \: min} \\ \\ \bold{Alternate \: method : } \\ \tt: \implies Time = \frac{Distance}{Speed} \\ \\ \tt: \implies Time = \frac{490}{7} \times \frac{metre \times min}{metre} \\ \\ \green{\tt: \implies Time = 70 \: min}\end{gathered}∘Acceleration=0ms2Asweknowthat:⟹s=ut+21at2:⟹490=7×t+21×0×t2:⟹490=7×t:⟹t=7490:⟹t=70minAlternatemethod::⟹Time=SpeedDistance:⟹Time=7490×metremetre×min:⟹Time=70min

Answered by omjadhav21viiie
1

Step-by-step explanation:

Answer:

\green{\tt{\therefore{Time=70\:min}}}∴Time=70min

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

Step−by−stepexplanation:

\begin{gathered}\green{\underline \bold{Given : }} \\ \tt: \implies Initial \: speed = 7 \: m/min \\ \\ \tt: \implies Total \: distance = 490 \: m \\ \\ \red{\underline \bold{To \: Find : }}\\ \tt: \implies Time \: taken = ?\end{gathered}

Given:

:⟹Initialspeed=7m/min

:⟹Totaldistance=490m

ToFind:

:⟹Timetaken=?

• According to given question :

\begin{gathered} \tt \circ \: Acceleration = 0 \: {ms}^{2} \\ \\ \bold{As \: we \: know \: that} \\ \tt: \implies s = ut + \frac{1}{2} a {t}^{2} \\ \\ \tt: \implies 490 = 7 \times t + \frac{1}{2} \times 0 \times {t}^{2} \\ \\ \tt: \implies 490 = 7 \times t \\ \\ \tt: \implies t = \frac{490}{7} \\ \\ \green{\tt: \implies t = 70 \: min} \\ \\ \bold{Alternate \: method : } \\ \tt: \implies Time = \frac{Distance}{Speed} \\ \\ \tt: \implies Time = \frac{490}{7} \times \frac{metre \times min}{metre} \\ \\ \green{\tt: \implies Time = 70 \: min}\end{gathered}

∘Acceleration=0ms

2

Asweknowthat

:⟹s=ut+

2

1

at

2

:⟹490=7×t+

2

1

×0×t

2

:⟹490=7×t

:⟹t=

7

490

:⟹t=70min

Alternatemethod:

:⟹Time=

Speed

Distance

:⟹Time=

7

490

×

metre

metre×min

:⟹Time=70min

Similar questions