Math, asked by jheel15, 10 months ago


An Elevator descends into mine shaft at the rate of 5 m/min is the descent starts from 10m above
ground level how long will take to reach - 400m?​

Answers

Answered by BrainlyConqueror0901
22

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Time=82\:min}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given:}} \\  \tt: \implies Initial \: speed = 5 \: min/m \\  \\  \tt:  \implies Total\:Distance(s) = 410 \: m \\  \\ \red{\underline \bold{To \: Find:}} \\  \tt:  \implies Time \: of \: desecent = ?

• According to given question :

 \bold{As \: we \: know \: that}  \\  \tt:\implies Time =  \frac{Distance}{Speed}  \\  \\ \tt:\implies Time =  \frac{410}{5}  \\  \\  \green{\tt:\implies Time = 82 \: min} \\  \\  \bold{Alternate \: method} \\ \tt:\implies s = ut +  \frac{1}{2} a {t}^{2}  \\  \\ \tt:\implies 410= 5 \times t +  \frac{1}{2}  \times 0 \times  {t}^{2}  \\  \\ \tt:\implies 410 = 5 \times t \\  \\ \tt:\implies t =  \frac{410}{5}  \\  \\  \green{\tt:\implies t = 82 \: min}

Answered by Saby123
29

 \tt{\orange {\huge{--------}}} B.Q

QUESTION :

An Elevator descends into mine shaft at the rate of 5 m/min is the descent starts from 10m above ground level how long will take to reach - 400m?

SOLUTION :

This is an extremely easy and simple question...

Total Distance = 10 m.- ( - 400 m ) = 410 m.

Rate = 5 m / min.

Now,

Time = Displacement / Speed = 410 / 5 min

=> 82 mins.

=> 1 hour 22 mins...........[ A ]

Similar questions