Physics, asked by dtnikam4827, 11 months ago

An eqiconvex lens has a power of 5D.if it is made of refractive index 1.5 then radius of curvature of its each surface will be?

Answers

Answered by Anonymous
8

\huge\underline\blue{\sf Answer:}

\red{\boxed{\sf Radius\:of\: Curvature\:(R)=20\:cm }}

\huge\underline\blue{\sf Solution:}

\large\underline\pink{\sf Given: }

  • Power (P) = 5D

  • Refractive index \sf{(\mu)=1.5}

\large\underline\pink{\sf To\:Find: }

  • Radius of curvature (R) = ?

━━━━━━━━━━━━━━━━━━━━━━━━━━

\large{\boxed{\sf P=\frac{1}{f}}}

\large\implies{\sf f=\frac{1}{P}}

\large\implies{\sf f=\frac{1}{5}}

\large\implies{\sf f=0.2m}

\large\implies{\sf f=0.2×100}

\large\implies{\sf f=20cm}

For Equiconvex lens :-

\large\implies{\sf \frac{1}{f}=(\mu-1)\left(\frac{1}{+R}-\frac{1}{-R}\right) }

\large\implies{\sf \frac{1}{f}=(\mu-1)\left(\frac{2}{R}\right) }

\large{\boxed{\sf f=\frac{R}{2(\mu-1)}}}

On putting value :

\large\implies{\sf 20=\frac{R}{2(1.5-1)}}

\large\implies{\sf 20=\frac{R}{2×0.5} }

\large\implies{\sf 20=\frac{R}{1} }

\large\implies{\sf R=20×1 }

\large\implies{\sf R=20\:cm}

\red{\boxed{\sf Radius\:of\: Curvature\:(R)=20\:cm }}

Radius of curvature (R) of eqiconvex lens is 20cm

Attachments:
Similar questions