Math, asked by snjoshi8286, 1 year ago

An equilateral triangle has side 3 root 3 then radius of circumcircle is

Answers

Answered by Anonymous
15

\huge\underline\blue{\sf Answer:}

\large\red{\boxed{\sf r=3\:cm }}

\huge\underline\blue{\sf Solution:}

\large\underline\pink{\sf Given: }

  • Side of equilateral triangle (s)=\sf{3\sqrt{3}}

\large\underline\pink{\sf To\:Find: }

  • Radius of circumcircle (r) = ?

━━━━━━━━━━━━━━━━━━━━━━━━━━

We know ,

\Large{♡}\large{\boxed{\sf r=\frac{s}{\sqrt{3}}}}

Here ,

r = Radius of circumcircle

s = side of Lenght of equivalent Triangle

\large\implies{\sf s=3\sqrt{3}}

\large\implies{\sf r=\frac{s}{\sqrt{3}}}

\large\implies{\sf r=\frac{3\sqrt{3}}{\sqrt{3}}}

On rationalisation :-

\large\implies{\sf r=\frac{3\sqrt{3}}{\sqrt{3}}×\frac{\sqrt{3}}{\sqrt{3}}}

\large\implies{\sf r=3cm}

\huge\red{♡}\large\red{\boxed{\sf r=3\:cm }}

Hence ,

The radius of its circumcircle is 3cm.

Answered by Anonymous
7

\Large\underline{\underline{\sf \green{Given}:}}

  • Side of equilateral triangle (s) = \sf{3\sqrt{3}}

\Large\underline{\underline{\sf \green{To\:Find}:}}

  • Radius of circumcircle (R) = ?

\Large\underline{\underline{\sf \green{Formula\:Used}:}}

{\boxed{\sf \red{Radius\:of\: circular (R)=\dfrac{Side\:of\: triangle}{\sqrt{3}}} }}

\Large\underline{\underline{\sf \green{Solution}:}}

\implies{\sf R=\dfrac{3\sqrt{3}}{\sqrt{3}} }

On Rationalisation :-

\implies{\sf R=\dfrac{3\sqrt{3}}{\sqrt{3}}×\dfrac{\sqrt{3}}{\sqrt{3}} }

\implies{\sf R=3\:cm }

\Large\underline{\underline{\sf \green{Answer}:}}

⛬ Radius of Circumcircle is 3 cm.

Similar questions