An equilateral triangle is inscribed in a circle. Select the option that indicates
how many times is the area of circle with respect to the area of triangle.
Answers
Answered by
0
Answer:
⇒ Here, AB=BC=AC=12cm
⇒ Let OP=OR=OQ=r
⇒ We have O as the incenter and OP,OQ and OR are equal.
⇒ ar(△ABC)=ar(△OAB)+ar(△OBC)+ar(△OCA)
4
3
×(side)
2
=(
2
1
×OP×AB)+(
2
1
×OQ×BC)+(
2
1
×OR×AC)
⇒
4
3
×(12)
2
=(
2
1
×r×12)+(
2
1
×r×12)+(
2
1
×r×12)
⇒
4
3
×(12)
2
=3(
2
1
×12×r)
∴ r=
18
36
3
∴ r=2
3
cm
⇒ Area of the shaded region = Area of △ABC - Area of circle.
⇒ Area of the shaded region =
4
3
×(12)
2
−
7
22
×(2
3
)
2
⇒ Area of the shaded region =(62.35−37.71)cm
2
=24.64cm
2
Similar questions