Math, asked by Raaj5047, 10 months ago

An equilateral triangle of side 2√3cm . Find its area

Answers

Answered by keerthanakreddy
0

Answer:

please mark this is the brainliest

Attachments:
Answered by silentlover45
13

\underline\mathfrak{Given:-}

  • \: \: \: \: \: An \: \: equilateral \: \: triangle \: \: of \: \: side \: \: = \: \:  {2}\sqrt{3} \: cm

\underline\mathfrak{To \: \: Find:-}

  • \: \: \: \: \: find \: \: it's \: \: area.?

\underline\mathfrak{Solutions:-}

  • \: \: \: \: \: Let \: \: the \: \: area \: \: of \: \: triangle \: \: be \: \: x \: cm.

\: \: \: \: \: \fbox{Area \: \: of \: \: equilateral \: \: triangle \: \: = \: \: \frac{\sqrt{3}}{4} \: \times \: {(sides)}^{2}}

  • \: \: \: \: \: \frac{\sqrt{3}}{4} \: \times \: {(sides)}^{2} \: \: = \: \: x

\: \: \: \: \: \leadsto \frac{\sqrt{3}}{4} \: \times \: {2}\sqrt{3} \: \: = \: \: x

\: \: \: \: \: \leadsto \frac{{2} \: \times \: {3}}{4} \: \: = \: \: x

\: \: \: \: \: \leadsto \frac{6}{4} \: \: = \: \: x

\: \: \: \: \: \leadsto \frac{3}{2} \: \: = \: \: x

  • \: \: \: \: \: Hence, \: \: the \: \: area \: \: of \: \: equilateral \: \: is \: \: \frac{3}{2}.

\underline\mathfrak{Important \: \: formula:-}

  • \: \: \: \: \: base \: \: and \: \: height \: \leadsto \: A \: \: = \: \: \frac{1}{2} \: bh \: \: \: \: \\ \: \: \: \: \: \: \: \: \: \: {(where \: \: b \: \: = \: \: base, \: \: h \: \: = \: \: height)}

  • \: \: \: \: \: three \: \: sides \: \leadsto \: A \: \: = \: \: \sqrt{s \: (s \: - \: a) \: (s \: - \: b) \: (s \: - \: c)} \: \: \: \\ \: \: \: \: \: \: \: \: \: \: {(where \: \: a, \: \: b, \: \: and \: \: c \: \: are \: \: the \: \: length \: \: of \: \: the \: \: side.)}

  • \: \: \: \: \: two \: \: sides \: \: and \: \: including \: \: angles \: \: \leadsto \: \: A \: \: = \: \: \frac{1}{2} \: Sin \: c \: \: \: \\ \: \: \: \: \: \: \: \: \: \: {(where \: \: a, \: \: b, \: \: are \: \: two \: \: sides \: \: and \: \: c \: \: is \: \: the \: \: angle \: \: between \: \: them.)}

  • \: \: \: \: \: equilateral \: \: triangle  \: \: \leadsto \: \: A \: \: = \: \: \frac{{s}^{2} \: \sqrt{3}}{4} \: \: \: \: \\ \: \: \: \: \: \: \: \: \: \: {(where \: \: s \: \: = \: \: side.)}

______________________________________

Similar questions