Math, asked by tanmaynandwana908, 11 months ago

An equilateral triangle with side 'a'. Find area of the triangle using Heron formula. If it's perimeter is 180 CM, what will be the area of the triangle.

Answers

Answered by Anonymous
28

Given :

  • An equilateral triangle with side 'a'.
  • Perimeter = 180 cm.

To Find :

  • Area of the equilateral triangle using heron's formula.

Solution :

Since given in the question, the triangle is an equilateral triangle, we therefore know that each side of the triangle will be a cm.

Sum of the 3 sides i. e perimeter of the triangle is 180 cm.

So, from here we will find the length of each side.

\longrightarrow \sf{Perimeter\:=\:a+a+a}

\longrightarrow \sf{180=3a}

\longrightarrow \sf{\dfrac{180}{3}=a}

\longrightarrow \sf{60=a}

° Sides of the equilateral triangle, a = 60 cm.

Now, we have to find the area of the triangle with side 60 cm using the heron's formula.

Heron's formula :

\large{\boxed{\sf{\purple{Area\:=\:\sqrt{s\:(s-a) (s-b) (s-c)}}}}}

Where,

  • s = Semi perimeter
  • a = First side
  • b = Second side
  • c = Third side.

Since, the triangle is an equilateral triangle, we will substitute a instead of b and c.

Let's begin calculating the semi perimeter.

We know, semi perimeter (s) is ½ (half of) the perimeter.

\sf{Semi\:perimeter\:(s)\:=\:\dfrac{Perimeter}{2}}

\longrightarrow \sf{s=\dfrac{180}{2}}

\longrightarrow \sf{s=90}

\large{\boxed{\sf{\blue{Semiperimeter\:(s)\:=\:90\:cm}}}}

Now, substitute s = 90 and a = 60 in the heron's formula to find the area of the triangle.

\sf{Area\:=\:\sqrt{90\:(90-60)(90-60)(90-60)}}

\longrightarrow \sf{Area\:=\:\sqrt{90(30)(30)(30)}}

\longrightarrow \sf{Area\:=\:\sqrt{90\:\times\:27000}}

\longrightarrow \sf{Area\:=\:\sqrt{2430000}}

\longrightarrow \sf{Area\:=\:1558.84}

\large{\boxed{\sf{\purple{Area\:of\:the\:triangle\:=\:1558.84\:cm^2}}}}

Answered by TheBrainlyWizard
105

\bf{\underline{\underline{Given\: :}}}

\mathsf{\star\: \: Side\:of\:equilateral\: triangle = a}

\mathsf{\star\: \: Perimeter = 180\:cm}\\ \\

\bf{\underline{\underline{To\:find\: :}}}

\mathsf{\star\: \: Area\:of \:the\:triangle}\\ \\

\bf{\underline{\underline{Solution\: :}}}

let us find out the side of the equilateral triangle

\mathsf{Perimeter = 180\:cm}\\

\mathtt{\implies\: a + a + a = 180\:cm}\\

\mathtt{\implies\: 3a = 180\:cm}\\

\mathtt{\implies\: a = \frac{180}{3}\:cm}\\

\mathtt{\implies\: a = 60\:cm }\\ \\

Now, let us find out Semi perimeter (s)

\large{\fbox{\mathtt{s = \frac{Perimeter}{2}}}}\\

\mathtt{\implies\: s = \Large{\frac{180}{2}\:}\large{cm}}

\mathtt{\implies\: s = 90\:cm}\\ \\

\bf{\underline{\underline{Using\: Heron's \:formula\: :}}}\\

\fbox{\mathsf{Area = \sqrt{s(s-a)\:(s-b)\:(s-c)}}}\\

\mathtt{Where}

  • s = Semi perimeter
  • a = first side
  • b = second side
  • c = third side

Since it is an equilateral triangle, we can express b and c as a

\fbox{\mathsf{Area = \sqrt{s(s-a)\:(s-a)\:(s-a)}}}\\

\mathtt{\implies\: \sqrt{90(90 - 60) \: (90 - 60) \: (90 - 60) }}

\mathtt{\implies\: \sqrt{90 × 30 × 30 × 30 }}

\mathtt{\implies\: \sqrt{2700 × 900 }}

\mathtt{\implies\: \sqrt{2430000 }}

\fbox{\mathtt{\green{\implies\: 1558.84\: cm^{2} \:} (Answer) }}

Attachments:
Similar questions