an exterior angle of a parallelogram is 110°. Find the angles of the parallelogram
Answers
Answer:
All the angles of the parallelogram are
<A = 110°
<B= 70°
<C= 110°
and<D=70°
Exterior angles of parallelogram = 110° (given)
D+C=180
C=180−110
=70
D=A (Opposite anɡels of ∣∣ɡm)
A=110
C=B (Opposite anɡelsbof ∣∣ɡm)
70°+70°
B=70°
∴ A=110°
B=70°
C=70°
D=110°
OR
SOLUTION :
ABCD is a parallelogram.
\angle{CBX}∠CBX is exterior angle of parallelogram ABCD.
\angle{CBX}∠CBX + \angle{ABC}∠ABC = 180°
110° + \angle{ABC}∠ABC = 180°
\angle{ABC}∠ABC = 180° - 110°
\angle{ABC}∠ABC = 70°
\angle{B}∠B = \angle{D}∠D
[ \therefore∴ Opposite angles of parallelogram are equal ]
so, \angle{D}∠D = 70°
\angle{DCB}∠DCB + \angle{ABC}∠ABC = 180°
[ \therefore∴ Supplementary angles ]
\angle{DCB}∠DCB + 70° = 180°
\angle{DCB}∠DCB = 180° - 70°
\angle{DCB}∠DCB = 110°
Now,
\angle{C}∠C = \angle{A}∠A
[ \therefore∴ Opposite angles of parallelogram are equal ]
\angle{A}∠A = 110°