Math, asked by piyush4917, 9 months ago

An exterior angle of a triangle is 100° and its interior opposite angles are equal to each .
Find the measure of each angle of the triangle.
Please give step by step explanation.

Answers

Answered by NandiniSah
1

Answer:

50 degree

Step-by-step explanation:

let the equal angles be x

x+x = 100 degree

2x = 100

x = 100/2

x = 50 degree

Hence, the measure of the equal opposite interior angles is 50 degree.

Please mark it as the brainliest.

Answered by Anonymous
3

Answer :

Measure of each angle of triangle is 80°, 50° and 50°.

Step-by-step explanation:

Given :-

Measure of exterior angle of triangle is 100°.

Opposite angles of triangle are equal.

To find :-

Measure of each angle of triangle.

Solution :-

Let, Angles of triangle be ∠1, ∠2 and ∠3.

It is given angle opposite to 100° are equal.

So, ∠1 = ∠2

Sum of all angles forms on straight line is equal to 180° [We can say by linear pair]

\leadsto⇝ ∠3 + 100° = 180°

\leadsto⇝ ∠3 = 180° - 100°

\leadsto⇝ ∠3 = 80°

Measure of ∠3 is 80°.

Now,

By Angle sum property of triangle:

\leadsto⇝ ∠1 + ∠2 + ∠3 = 180°

Put ∠1 = ∠2 and ∠3 = 80°.

\leadsto⇝ ∠1 + ∠1 + 80° = 180°

\leadsto⇝ 2∠1 = 180° - 80°

\leadsto⇝ 2∠1 = 100°

\leadsto⇝ ∠1 = 100°/2

\leadsto⇝ ∠1 = 50°

Measure of ∠1 is 50°.

∠1 = ∠2

So,

Measure of ∠2 is 50°.

Therefore,

Measure of each angle of triangle is 80°, 50° and 50°.

Attachments:
Similar questions