Math, asked by shashwat2299, 16 days ago

An ice-cream brick measures 20cm by 10cm by 7cm. how much such bricks can be stored in deep fridge whose inner dimensions are 100 cm by 50 cm cm by 42 ?​

Answers

Answered by mathdude500
15

\large\underline{\sf{Solution-}}

Dimensions of ice-cream brick

  • Length of ice-cream brick = 20 cm

  • Breadth of ice-cream brick = 10 cm

  • Height of ice-cream brick = 7 cm

We know, ice-cream brick is in the shape of cuboid and volume of cuboid of length l, breadth b and height h is given by

\boxed{ \rm{ \:Volume_{(Cuboid)} \:  =  \: l \times b \times h \: }} \\

So, using this result, we get

\rm \: Volume_{(ice-cream\:brick)} = 20 \times 10 \times 7 \\

\rm\implies \:\boxed{ \rm{ \:Volume_{(ice-cream\:brick)} = 1400 \:  {cm}^{3} \:  \: }} \\

Inner dimensions of deep - fridge

  • Length of deep - fridge brick = 100 cm

  • Breadth of deep - fridge cream brick = 50 cm

  • Height of deep - fridge = 42 cm

We know, deep - fridge is in the shape of cuboid and volume of cuboid of length l, breadth b and height h is given by

\boxed{ \rm{ \:Volume_{(Cuboid)} \:  =  \: l \times b \times h \: }} \\

So, using this result, we get

\rm \: Volume_{(deep \:  - \:fridge)} = 100 \times 50 \times 42 \\

\rm\implies \:\boxed{ \rm{ \:Volume_{(deep \:  - \:fridge)} \:  =  \: 210000 \:  {cm}^{3} \: }} \\

Now, Let assume that n ice-cream bricks be stored in deep fridge.

So,

\rm \: n \times Volume_{(ice-cream\:brick)} = Volume_{(deep \:  - \:fridge)} \\

\rm \: n \times 1400 = 210000 \\

\rm\implies \:\boxed{ \rm{ \:n \:  =  \: 150 \:  \: }} \\

So, it means 150 such bricks can be stored in deep fridge whose inner dimensions are 100 cm by 50 cm cm by 42.

\rule{190pt}{2pt}

Additional information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{CSA_{(cylinder)} = 2\pi \: rh}\\ \\ \bigstar \: \bf{Volume_{(cylinder)} = \pi {r}^{2} h}\\ \\ \bigstar \: \bf{TSA_{(cylinder)} = 2\pi \: r(r + h)}\\ \\ \bigstar \: \bf{CSA_{(cone)} = \pi \: r \: l}\\ \\ \bigstar \: \bf{TSA_{(cone)} = \pi \: r  \: (l + r)}\\ \\ \bigstar \: \bf{Volume_{(sphere)} =  \dfrac{4}{3}\pi {r}^{3}  }\\ \\ \bigstar \: \bf{Volume_{(cube)} =  {(side)}^{3} }\\ \\ \bigstar \: \bf{CSA_{(cube)} = 4 {(side)}^{2} }\\ \\ \bigstar \: \bf{TSA_{(cube)} = 6 {(side)}^{2} }\\ \\ \bigstar \: \bf{Volume_{(cuboid)} = lbh}\\ \\ \bigstar \: \bf{CSA_{(cuboid)} = 2(l + b)h}\\ \\ \bigstar \: \bf{TSA_{(cuboid)} = 2(lb +bh+hl )}\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Answered by Aquilla5
39

  \huge{ \pink{\dag}} \large \underline{ \bf{ Solution:-}}

Dimensions of ice cream brick

 \sf{ =  \:  20 \: cm×10 \: cm×7cm}

 \sf{∴ Volume = 20×10×7cm ^{3} =1400cm ^{3} }

Dimensions of inner of fridge

 \sf{= 100 \: cm×50 \: cm×42 \: cm}

 \sf{= 210000  \: cm³}

∴ Number of bricks to be kept in the fridge

 \bf{ \red{ =  }\frac{210000}{1400}  =  \green{150}}

___________________________

Similar questions