. An Ice cream in the shape of a cone is surmounted by a hemisphere. Find the volume of ice cream(in form of π) if, both radius of circular base of cone and hemisphere are 1Cm each and height of cone is 1 Cm .
(a) 4π
( b) π
(c) 3π
(d)none of these
Answers
•Volume of cone +volume of hemisphere = volume of ice-cream
=> 1/3 πr²h + 2/3 πr³
=> 1/3π + 2/3π
=> π
b) π
Given :
Area of Circular Card Board is 154 cm².
To Find :
Circumference of Base in the form of π .
Solution :
Firstly we will Find the Radius of Board :
Using Formula :
\longmapsto\tt\boxed{Area\:of\:Circle=\pi{{r}^{2}}}⟼
AreaofCircle=πr
2
Putting Values :
\longmapsto\tt{154=\dfrac{22}{7}\times{{r}^{2}}}⟼154=
7
22
×r
2
\longmapsto\tt{154\times{7}=22\times{{r}^{2}}}⟼154×7=22×r
2
\longmapsto\tt{1078=22\:{r}^{2}}⟼1078=22r
2
\longmapsto\tt{\cancel\dfrac{1078}{22}={r}^{2}}⟼
22
1078
=r
2
\longmapsto\tt{\sqrt{49}=r}⟼
49
=r
\longmapsto\tt\bf{7\:cm=r}⟼7cm=r
Radius of Circular Card Board is 7 cm .
Now ,
\longmapsto\tt{Radius=7\:cm}⟼Radius=7cm
Using Formula :
\longmapsto\tt\boxed{Circumference\:of\:Circle=2\pi{r}}⟼
CircumferenceofCircle=2πr
Putting Values :
\longmapsto\tt{2\times{\pi\times{7}}}⟼2×π×7
\longmapsto\tt\bf{14\:\pi\:cm}⟼14πcm
So , The Circumference of Circular Card board is 14 π cm
Option a)14 π cm is Correct