Physics, asked by akhileshar3940, 9 months ago

An ideal gas occupies a volume of 2 m³ at a pressure of 3 × 10⁶ Pa. The energy of the gas is:
(A) 9 × 10⁶J (B) 6 × 10⁴J
(C) 10⁸J (D) 3 × 10²J

Answers

Answered by Steph0303
39

Answer:

Translational Kinetic Energy of a Mono-atomic gas is given as:

→ 3/2 ( PV ) or 3/2 (nRT )   [ Since PV = nRT ]

(Degree of Freedom for a Mono-atomic gas is 3.)

According to the question,

  • Pressure ( P ) = 3 × 10⁶ Pa
  • Volume ( V ) = 2 m³

Substituting the values we get:

→ Energy = 3/2 × 3 × 10⁶ Pa × 2 m³

→ Energy = 9 × 10⁶ Pa.m³ or 9 × 10⁶ J

Hence option (A) is the correct answer.

Answered by rajsingh24
115

QUESTION :-

An ideal gas occupies a volume of 2 m³ at a pressure of 3 × 10⁶ Pa. The energy of the gas is:

(A) 9 × 10⁶J (B) 6 × 10⁴J

(C) 10⁸J (D) 3 × 10²J

SOLUTION :-

\star\rm{k.e \: of \: a \: gas \:due \:to \:translation} \rm{per \:mole ,}

 \implies \rm \: e =  \frac{3}{2}pv \\    \: \rm \: {where, }\\  \implies \rm \: r \:  = universal \: gas \: constant. \\ \implies  \rm \: t \:  = temperature \: of \: gas  \\   \rm \: now, \\ \implies \rm \:  p \:  = 3  \times 10 {}^{6}  \: and \:  \:  \: v \:  = 2m {}^{3}  \:  \\ \implies \rm  \:let \: gas \: is \:monoatomic\:  \:  \:  \:  .°. \:  f \:  = 3 \:  \: \\  \implies \rm  \: {\boxed{e =  \frac{f}{2}nRT=\frac{f}{2}pv}} \:  \longrightarrow \: \red \: {formula} \\ \implies \rm \:  .°. \: e =  \frac{3}{2}  \times 3 \times 10 {}^{6}  \times 2 \\  \implies \rm \:  .°. \: e = \frac{3}{ \cancel2}  \times 3 \times 10 {}^{6}  \times  \cancel2 \\  \implies \rm \:  .°. \: e =3 \times 3 \times 10 {}^{6}  \\  \implies \rm \:  { \boxed{\boxed{.°. \: e =9 \times 10 {}^{6} J}}} \\ \\  \longrightarrow \rm \huge  \underline{\: option \: (a) \: }

Similar questions