An ideal gas with adiabatic exponent γ is heated at constant pressure. It absorbs q amount of heat. Fraction of heat absorbed in increasing the temperature is
Answers
Answer: The fraction of heat absorbed in increasing the temperature is .
Explanation:
The fraction of heat supplied is used for external work.
In the given problem, An ideal gas with adiabatic exponent γ is heated at constant pressure. It absorbs q amount of heat.
The expression for the heat at constant pressure is as follows:
........ (1)
Here, C_{p} is the specific heat at constant pressure, n is the number of moles and is the change in the temperature.
The expression for the external work done is as follows:
........ (2)
Here, R is the universal gas constant.
Calculate the fraction of heat absorbed in increasing the temperature by dividing the equation by (2) and (1).
......... (3)
The expression for the specific heat capacity at constant pressure.
Here, is the adiabatic exponent.
Put the expression of specific heat at constant in the equation (3).
Therefore, the fraction of heat absorbed in increasing the temperature is .
"An ideal gas with adiabatic exponent γ is heated at constant pressure. It absorbs q amount of heat. Fraction of heat absorbed in increasing the internal energy is and the fraction of heat absorbed in work done is
Derivation explanation
Heat absorbed by the system at constant pressure:
Change in internal energy:
Fraction
"