Math, asked by Rabie, 1 year ago

An inclined plane rises 1 in 10.If length of the inclined plane is 5 m , calculate the height of the raised end above the horizontal

Answers

Answered by phillipinestest
27

Answer: The height is \frac { 5 }{ \sqrt { 101 } } meter

Given:

Inclined plane rises in 1 in 10.Length = 5 m

height = ?

Solution:

tan\quad \theta \quad =\quad \frac { 1 }{ 10 }

sin\quad \theta \quad =\quad \frac { 1 }{ \sqrt { { 10 }^{ 2 }\quad +\quad { 1 }^{ 2 } } } =\frac { 1 }{ \sqrt { 101 } }

sin\quad \theta \quad =\quad \frac { h }{ 5 }

\frac { h }{ 5 } =\frac { 1 }{ \sqrt { 101 } }

h\quad =\quad \frac { 5 }{ \sqrt { 101 } } meter

Answered by throwdolbeau
14

Answer:

\bf\textbf{Hence, The height of the raised end = }\frac{5}{\sqrt{101}}

Step-by-step explanation:

Length of the inclined plane = 5 m

As the inclined plane rises from 1 to 10

\implies \sin\theta=\frac{1}{\sqrt{10^2+1^2}}\\\\\implies\sin\theta=\frac{1}{\sqrt{101}}

Now, let the height of the raised end above the horizontal be h m

\implies \frac{h}{5}=\frac{1}{\sqrt{101}}\\\\\implies h=\frac{5}{\sqrt{101}}

\bf\textbf{Hence, The height of the raised end = }\frac{5}{\sqrt{101}}

Similar questions