Physics, asked by goyallabhance539, 11 months ago

An inductance of (200)/(pi) mH a capacitance of (10^(-3))/(pi) and a resistance of 10 Omega are connected in series with an AC source of 220 V, 50Hz. The phase angle of the circuit is

Answers

Answered by roshinik1219
1

Given:

  • Inductance (L) = \frac{200}{\pi} mH
  • Capacitance (C) = \frac{10^{-3}}{\pi} F
  • Resistance (R) =  10 \Omega
  • Voltage (V) = 220V
  • Frequency (n) = 50Hz

To Find:

  • Phase angle of the circuit

Solution:

Here,

          L = \frac{200}{\pi} mH

          L = \frac{200 \times 10^{-3}}{\pi} H

          L = \frac{0.2}{H} H

Inductance of a circuit is given by

⇒      X_L = \omega L

         X_L = 2 \pi n L

        X_L = 2 \pi \times 50 \times \frac{0.2}{\pi} = 20\Omega

Capacitance of a circuit is given by

⇒     X_C = \frac{1}{\omega C} = \frac{1}{2 \pi n C}

       X_C = \frac{\pi}{2 \pi \times 50 \times 10^{-3}} =10\Omega

tan \phi = \frac{(X_L-X_C)}{R}

tan \phi=\frac{20-10}{10}=1

  \phi = tan^{-1}(1)

  \phi = \frac{\pi}{4}

Thus, the phase angle is  \phi = \frac{\pi}{4}

Similar questions