Math, asked by vishnu876, 5 hours ago

An inequality that can be written in any of the following forms.ax²+bx+c>0,ax²+bx+c<,ax²+bx+c>_0,ax²+bx+c<0 in called

Answers

Answered by alkasurin37
0

Step-by-step explanation:

Let us recall the general solution, α = (-b-√b2-4ac)/2a and β = (-b+√b2-4ac)/2a

Case I: D^2 = b2 – 4ac > 0

When a, b, and c are real numbers, a ≠ 0 and discriminant is positive, then the roots α and β of the quadratic equation ax2 +bx+ c = 0 are real and unequal.

Case II: b2– 4ac = 0

When a, b, and c are real numbers, a ≠ 0 and discriminant is zero, then the roots α and β of the quadratic equation ax2+ bx + c = 0 are real and equal.

Case III: b2– 4ac < 0

When a, b, and c are real numbers, a ≠ 0 and discriminant is negative, then the roots α and β of the quadratic equation ax2 + bx + c = 0 are unequal and not real. In this case, we say that the roots are imaginary.

Case IV: b2 – 4ac > 0 and perfect square

When a, b, and c are real numbers, a ≠ 0 and discriminant is positive and perfect square, then the roots α and β of the quadratic equation ax2 + bx + c = 0 are real, rational and unequal.

Case V: b2– 4ac > 0 and not perfect square

When a, b, and c are real numbers, a ≠ 0 and discriminant is positive but not a perfect square then the roots of the quadratic equation ax2 + bx + c = 0 are real, irrational and unequal.

Here the roots α and β form a pair of irrational conjugates.

Case VI: b2– 4ac >0 is perfect square and a or b is irrational

When a, b, and c are real numbers, a ≠ 0 and the discriminant is a perfect square but any one of a or b is irrational then the roots of the quadratic equation ax2 + bx + c = 0 are irrational.

Given question is case no (iv) so option B is true.

Similar questions