Physics, asked by Mufsh, 1 year ago

an infinite ladder with 1 ohm and 2 ohm resistors is constructed as shown in figure.Find the effective resistance between A and B with solution.answer fast please.

Attachments:

Answers

Answered by nirman95
10

Answer:

This is a case of infinite series of resistances , so let's consider that the effective resistance be x

Now , since this is an infinite resistance series, if we skip the first square part, the other squares will form equivalent resistance of x (refer to attached photo to understand better)

So, x and 2 are in parallel and this combination is in series with 1 ohm.

 \dfrac{2x}{x + 2}  + 1 = eq. \: r

  =  > \dfrac{2x}{x + 2}  + 1 = x

  =  > \dfrac{2x + (x + 2)}{x + 2} = x

 =  > 3x + 2 =  {x}^{2}  +2 x

 =  >  {x}^{2}  - x  -  2 = 0

 =  >  {x}^{2}  - 2x + x - 2 = 0

 =  > x(x - 2) + 1(x - 2) = 0

 =  > (x + 1)(x - 2) = 0

So, either x = -1 or x = +2 . Since value of resistance has to be positive , we can say that Net Effective Resistance is 2 ohm.

So final answer :

 \boxed{ \red{ \bold{ \huge{eq. \: r \:  = 2 ohm}}}}

Attachments:
Answered by shadowsabers03
4

\Large\boxed{\sf{\quad2\ \Omega\quad}}

Consider the circuit with one \sf{1\ \Omega} and \sf{2\ \Omega} resistors each, connected as in the fig. Here the effective resistance is,

\longrightarrow\sf{R(1)=(2+1)\ \Omega}

\longrightarrow\sf{R(1)=3\ \Omega}

But we see that, here,

\longrightarrow\sf{R(1)=\left(2+\dfrac{1}{1}\right)\ \Omega}

Now consider the circuit with two \sf{1\ \Omega} and \sf{2\ \Omega} resistors each, connected as in the fig. Here the effective resistance is,

\longrightarrow\sf{R(2)=\left(\left((2+1)^{-1}+2^{-1}\right)^{-1}+1\right)\ \Omega}

\longrightarrow\sf{R(2)=\dfrac{11}{5}\ \Omega}

\longrightarrow\sf{R(2)=\left(2+\dfrac{1}{5}\right)\ \Omega}

\longrightarrow\sf{R(2)=\left(2+\dfrac{1}{4\times1+1}\right)\ \Omega}

Now consider the circuit with three \sf{1\ \Omega} and \sf{2\ \Omega} resistors each, connected as in the fig. Here the effective resistance is,

\longrightarrow\sf{R(3)=\left(\left(\left(\left((2+1)^{-1}+2^{-1}\right)^{-1}+1\right)^{-1}+2^{-1}\right)^{-1}+1\right)\ \Omega}

\longrightarrow\sf{R(3)=\dfrac{43}{21}\ \Omega}

\longrightarrow\sf{R(3)=\left(2+\dfrac{1}{21}\right)\ \Omega}

\longrightarrow\sf{R(3)=\left(2+\dfrac{1}{4\times5+1}\right)\ \Omega}

Now, consider the circuit with \sf{n} no. of \sf{1\ \Omega} and \sf{2\ \Omega} resistors each, connected as in the fig. Here the effective resistance is,

\longrightarrow\sf{R(n)=\left(2+\dfrac{1}{f(n)}\right)\ \Omega\quad\quad\dots(1)}

where,

\longrightarrow\sf{f(n)=4\cdot f(n-1)+1}

And \sf{f(1)=1} as seen earlier, so that \sf{f(0)} should be \sf{0.}

\longrightarrow\sf{f(1)=4\cdot f(0)+1}     [By definition]

\longrightarrow\sf{1=4\cdot f(0)+1}

\longrightarrow\sf{f(0)=0}

Now let's have an expression for \sf{f(n)} in terms of \sf{n} only. By definition,

\longrightarrow\sf{f(n)=4\cdot f(n-1)+1}

\longrightarrow\sf{f(n)=4[4\cdot f(n-2)+1]+1}

\longrightarrow\sf{f(n)=4^2\cdot f(n-2)+4+1}

\longrightarrow\sf{f(n)=4^2[4\cdot f(n-3)+1]+4+1}

\longrightarrow\sf{f(n)=4^3\cdot f(n-3)+4^2+4+1}

\sf{\dots\dots\dots\dots\dots}

\longrightarrow\sf{f(n)=4^n\cdot f(n-n)+4^{n-1}+4^{n-2}+\,\dots\,+4+1}

Since \sf{f(n-n)=f(0)=0,}

\longrightarrow\sf{f(n)=4^{n-1}+4^{n-2}+4^{n-3}+\,\dots\,+4+1}

Well it's better to take,

\longrightarrow\sf{f(n)=1+4+4^2+\,\dots\,+4^{n-1}}

So \sf{f(n)} appears as a geometric series with \sf{a=1} and \sf{r=4.}

Hence,

\longrightarrow\sf{f(n)=\dfrac{a(r^n-1)}{r-1}}

\longrightarrow\sf{f(n)=\dfrac{4^n-1}{3}}

So (1) becomes,

\longrightarrow\sf{R(n)=\left(2+\dfrac{3}{4^n-1}\right)\ \Omega}

Hence the effective resistance in the infinite ladder shown in the fig. is given by,

\displaystyle\longrightarrow\sf{R=\lim_{n\to\infty}\left(2+\dfrac{3}{4^n-1}\right)\ \Omega}

Or,

\displaystyle\longrightarrow\sf{R=\left(2+\lim_{n\to\infty}\dfrac{3}{4^n-1}\right)\ \Omega\quad\quad\dots(2)}

Well,

  • \sf{n\longrightarrow\infty}

  • \sf{4^n\longrightarrow\infty}

  • \sf{4^n-1\longrightarrow\infty}

  • \sf{\dfrac{1}{4^n-1}\longrightarrow0}

  • \sf{\dfrac{3}{4^n-1}\longrightarrow0}

Therefore,

  • \displaystyle\sf{\lim_{n\to\infty}\dfrac{3}{4^n-1}=0}

So from (2),

\longrightarrow\sf{R=(2+0)\ \Omega}

\longrightarrow\sf{\underline{\underline{R=2\ \Omega}}}

Similar questions