Physics, asked by Amandeepjaat5261, 8 months ago

An infinitely long straight wire contains a uniformly
continuous current of 10A. The radius of the wire is 4× 10 ⁻²
m. The magnetic field at 2 × 10⁻² m from the centre of the
wire will be:
(a) 0 (b) 2.5 × 10 ⁻⁵ T
(c) 5.0 × 10 ⁻⁵ T (d) none of these.

Answers

Answered by nirman95
20

Given:

An infinitely long straight wire contains a uniformly continuous current of 10A. The radius of the wire is 4× 10 ⁻² m.

To find:

The magnetic field at 2 × 10⁻² m from the centre.

Calculation:

Applying Ampere Circutal Law ;

 \therefore \:  \displaystyle \int \: B \: . \: dl =   \mu_{0}i

 =  >  \:   \: B  \times 2\pi r =   \mu_{0} \times ( \dfrac{I}{\pi {R}^{2}h }  \times \pi {r}^{2} h)

 =  >  \:   \: B  \times 2\pi r =   \mu_{0} \times ( \dfrac{I {r}^{2} }{ {R}^{2} } )

 =  >  \:   \: B  \times 2\pi  =   \mu_{0} \times ( \dfrac{I r}{ {R}^{2} } )

 =  >  \:   \: B    =    \dfrac{\mu_{0} }{2\pi}\times ( \dfrac{I r}{ {R}^{2} } )

 =  >  \:   \: B    =    \dfrac{\mu_{0} }{4\pi}\times ( \dfrac{2I r}{ {R}^{2} } )

Putting the available values:

 =  >  \:   \: B    =    {10}^{ - 7} \times  \{ \dfrac{2 \times 10 \times  2 \times  {10}^{ - 2} }{ {(4 \times  {10}^{ - 2} )}^{2} }  \}

 =  >  \:   \: B    =    {10}^{ - 7} \times  \{ \dfrac{2 \times 10 \times  2 \times  {10}^{ - 2} }{16 \times  {10}^{ - 4}  }  \}

 =  >  \:   \: B    =    {10}^{ - 7} \times  \{ \dfrac{  {10}^{ - 1} }{4 \times  {10}^{ - 4}  }  \}

 =  >  \:   \: B    =  2.5 \times   {10}^{ - 5} \: tesla

So, final answer is

 \boxed{ \bold{ \large{\:   \: B    =  2.5 \times   {10}^{ - 5} \: tesla}}}

Similar questions