An insect walks in x-y plane from A(12,1) in a straight line to reach a point P on x axis.From point P
it walks to another point B(9,4) again in a straight line. Let x be the length of shortest path it
travels, find sum of digits of 100(x^2+ x^4)
Answers
Answer:
11
Step-by-step explanation:
An insect walks in x-y plane from A(12,1) in a straight line to reach a point P on x axis
=> P = ( P , 0) as its on x axis
Distance PA = √( (P - 12)² + (0-1)²) = √ ((P - 12)² + 1)
PB = √( (P - 9)² + (0-4)²) = √ ((P - 9)² + 16)
x = PA + PB = √ ((P - 12)² + 1) + √ ((P - 9)² + 16)
dx/dP = (1/2)2(P - 12)/√ ((P - 12)² + 1) + (1/2)2(P-9)/√ ((P - 9)² + 16)
dx/dP = 0
=> (1/2)2(P - 12)/√ ((P - 12)² + 1) = - (1/2)2(P-9)/√ ((P - 9)² + 16)
=> (P - 12)√ ((P - 9)² + 16) = -(P-9)√ ((P - 12)² + 1)
Squaring both sides
(P-12)²(P - 9)² + 16) = (P -9)² ((P - 12)² + 1) )
=> (P-12)²(P - 9)² + 16(P-12)² = (P -9)²(P - 12)² + (P -9)²
=> 16(P-12)² = (P -9)²
Taking square root both sides
=> 4(P - 12) = ± (P-9)
=> P = 13 or P = 11.4
P = 11.4 will give shortest Distance
x = √ ((P - 12)² + 1) + √ ((P - 9)² + 16)
= √(0.6² + 1) + √(2.4)² + 16
= √1.36 + √21.76
= √1.36(1 + 4)
= 5√1.36
=> x² = 34
100 (x² + x⁴)
= 100 ( 34 + (34)²)
= 3400 ( 1 + 34)
= 35 * 3400
= 119000
Sum of Digits = 1 + 1 + 9 = 11
= 100 ( 34 + 24