Physics, asked by ankitpatelkv, 5 months ago

An iron bar of length 10 m is heated from 0°C to 100°C. If the coefficient of linear thermal expansion of iron is 10 X 10^-6 / °C , the increase in the length of bar is
(a) 0.5 cm (b) 1.0 cm (c) 1.5 cm (d) 2.0 cm

PLEASE GIVE STEP BY STEP ANSWER

Answers

Answered by Anonymous
55

Answer :

  • Increase in length of the iron bar is 1 cm.

Explanation :

Given :

  • Coefficient of linear expansion, \sf{\alpha = 10 \times 10^{-6}{}^{\circ}C^{-1}}
  • Initial length of the iron bar,\sf{\it{l}_{1} = 10\:m}
  • Initial temperature of the iron bar,\sf{\theta_{1} = 10^{\circ}C}
  • Final temperature of the iron bar,\sf{\theta_{2} = 100^{\circ}C}

To find :

  • Increase of length of the iron bar,\sf{\Delta l = ?}

Knowledge required :

Coefficient of linear expansion :

⠀⠀⠀⠀⠀⠀⠀⠀⠀\boxed{\bf{\alpha = \dfrac{\Delta l}{l_{1}(\theta_{2} - \theta_{1})}}}

Where,

  • \sf{\alpha} = Coefficient of linear expansion.
  • \sf{\it{l}_{1}} = Initial length of the iron bar.
  • \sf{\Delta l} = Increase length of the iron bar.
  • \sf{\theta_{1}} = Initial temperature of the iron bar.
  • \sf{\theta_{2}} = Final temperature of the iron bar.

Solution :

By using the equation for linear expansion and substituting the values in, we get :

:\implies \bf{\alpha = \dfrac{\Delta l}{l_{1}(\theta_{2} - \theta_{1})}} \\ \\ :\implies \bf{10 \times 10^{-6} = \dfrac{\Delta l}{10(100^{\circ} - 0^{\circ})}} \\ \\ :\implies \bf{10 \times 10^{-6} = \dfrac{\Delta l}{10 \times 100^{\circ}}} \\ \\ :\implies \bf{10 \times 10^{-6} = \dfrac{\Delta l}{1000^{\circ}}} \\ \\ :\implies \bf{10 \times 10^{-6} \times 10^{3} = \Delta l} \\ \\ :\implies \bf{10^{-6 + 3 + 1} = \Delta l} \\ \\ :\implies \bf{10^{-2} = \Delta l} \\ \\ :\implies \bf{10^{-2} = \Delta l} \\ \\ \boxed{\therefore \bf{\Delta l = 10^{-2} m\:or\:1 cm}} \\ \\

Therefore,

  • Final length of the iron bar,\sf{\it{l}_{2} = 1 cm}
Similar questions