an iron pillar has some part in the form of a right circular cylinder and remaining in the form of a right circular cone.the radius of the base of each of cone and cylinder is 8 cm.the cylinderical part is 240 cm high and the conical part is 36 cm high.find the weight of the pillar if one cu.cm of iron weighs 7.8 grams.
Answers
Answered by
1
volume of pillar = volume of cylindrical part + volume of conical part
Volume of cylinder of radius 'R' and height 'h' =
πR^2h,
volume of cone = 1/3 πr^2h
Answered by
1
Answer
Radius = 8 cm
Height of cylinder = 240 cm
the conical part in 36 cm high.
Weight of the pillar if one cu. cm of iron weighs 7.8 grams.
Volume of cylinder = πr²h
Volume of cone = ⅓πr²h
Now,
Volume of cylinder = 3.14 × 8 × 8 × 240
=> 48320.4 cm^3
Now,
⅓ × 3.14 × 8 × 8 × 36
1 × 3.14 × 8 × 8 × 12
3.14 × 64 ×12
2411.52 cm^3
Now,
Weight of pillar = Volume of cylinder + volume of cone
W = 48320.4 + 2411.52
W = 50730
Now,
1kg = 1000gm
7.8/1000 × 50730
0.0078 × 50730
395.4 kg
@_
Similar questions