Math, asked by avinashbajpei, 10 months ago

an iron pillar has some part in the form of a right circular cylinder and remaining in the form of right circular conethe radius of base of each of cone on cylinder is its the cylindrical part is 240cm high and conical part is 36 find the weight of the pillar if one cubic centimetre of iron weight 7.8 grams with figure​

Answers

Answered by Anonymous
48

Step-by-step explanation:

\huge\mathfrak\green{\bold{\underline{☘{ ℘ɧεŋσɱεŋศɭ}☘}}}

\red{\bold{\underline{\underline{QUESTION:-}}}}

Q:-solve and verify the equation

 \frac{1}{3} x - 4 = x - ( \frac{1}{2} + \frac{x}{ 3} )

\huge\tt\underline\blue{Answer }

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️

══════════XXX═════════════

⟹</p><p> \frac{1}{3} x - 4 = x  - ( \frac{1}{2}  +  \frac{x}{3} )

⟹</p><p> \frac{x}{3}  - 4 = x - ( \frac{3 + 2x}{6} )

⟹</p><p> \frac{x - 12}{3}  = x - ( \frac{2x + 3}{6} )

⟹</p><p> \frac{x - 12}{3}  = x -  \frac{2x - 3}{6}

⟹</p><p> \frac{x - 12}{3}  =  \frac{6x - 2x - 3}{6}

⟹</p><p> \frac{x - 12}{3}  =  \frac{4x - 3}{6}

cancelling 6( R.H.S) By 3 From L.H.S

⟹ \frac{x - 12}{1}  =  \frac{4x  - 3}{2} </p><p>

⟹</p><p>2(x - 12) = 4x - 3

⟹</p><p>2x - 24 = 4x - 3

⟹</p><p> - 24 + 3 = 4x - 2x

⟹</p><p> - 21 = 2x

⟹</p><p>x =  -  \frac{21}{2}

CHECK:-

⟹ \frac{  - \frac{21}{2} }{3}  - 4 =   - \frac{21}{2}  - ( \frac{1}{2}  + ( - ) \frac{ \frac{21}{2} }{3} )</p><p>

⟹</p><p> -  \frac{21}{6}  - 4 =  -  \frac{21}{2}  - ( \frac{1}{2}  -  \frac{21}{6} )

⟹</p><p>  - \frac{7}{2}  - 4 =   - \frac{21}{2} - ( \frac{1}{2}   -  \frac{7}{2} )

⟹</p><p> \frac{ - 7 - 8}{2}  = -   \frac{21}{2}  - ( -  \frac{6}{2} )

⟹ -  \frac{15}{2}  =  -  \frac{21}{2} - ( - 3) </p><p>

⟹</p><p>  - \frac{15}{2}  =  -  \frac{21}{2}  + 3

⟹</p><p> -  \frac{15}{2}  =  \frac{ - 21 + 6}{2}  =  -  \frac{15}{2}

THEREFORE,L.H.S=R.H.S

VERIFIED✔️

══════════XXX═════════════

HOPE IT HELPS YOU..

_____________________

Thankyou:)

Answered by Anonymous
0

Answer:

395 \: kg

Step-by-step explanation:

We know that:-

Volume of cylinder = πr²h

Volume of cone = ⅓πr²h

Now,

Volume of cylinder = 3.14 × 8 × 8 × 240

=> 48320.4 cm^3

Now,

⅓ × 3.14 × 8 × 8 × 36

1 × 3.14 × 8 × 8 × 12

3.14 × 64 ×12

2411.52 cm^3

Now,

W = 48320.4 + 2411.52

W = 50730

Now,

1kg = 1000gm

7.8/1000 × 50730

0.0078 × 50730

395.4 kg

Weight of pillar is 395 kg.

Similar questions