An iron pillar has some part in the form of a right circular cylinder and remaining in the form of a right circular cone. The radius of the base of each of cone and cylinder is 8 cm. The cylinderical part is 240 cm high and the conical part in 36 cm high. Find the weight of the pillar if one cu. cm of iron weighs 7.8 grams.
Answers
Answered by
7
- Radius = 8 cm
- Height of cylinder = 240 cm
- the conical part in 36 cm high.
Weight of the pillar if one cu. cm of iron weighs 7.8 grams.
- Volume of cylinder = πr²h
- Volume of cone = ⅓πr²h
Now,
Volume of cylinder = 3.14 × 8 × 8 × 240
- => 48320.4 cm^3
Now,
- ⅓ × 3.14 × 8 × 8 × 36
- 1 × 3.14 × 8 × 8 × 12
- 3.14 × 64 ×12
- 2411.52 cm^3
Now,
Weight of pillar = Volume of cylinder + volume of cone
- W = 48320.4 + 2411.52
- W = 50730
Now,
- 1kg = 1000gm
- 7.8/1000 × 50730
- 0.0078 × 50730
- 395.4 kg
- Weight of pillar is 395 kg.
Answered by
18
Answer:
Explanation:
We know that:-
Volume of cylinder = πr²h
Volume of cone = ⅓πr²h
Now,
Volume of cylinder = 3.14 × 8 × 8 × 240
=> 48320.4 cm^3
Now,
⅓ × 3.14 × 8 × 8 × 36
1 × 3.14 × 8 × 8 × 12
3.14 × 64 ×12
2411.52 cm^3
Now,
W = 48320.4 + 2411.52
W = 50730
Now,
1kg = 1000gm
7.8/1000 × 50730
0.0078 × 50730
395.4 kg
Weight of pillar is 395 kg.
Similar questions