Math, asked by ashritabhishek8982, 10 months ago

An iscoceles right angled triangle has an area of 8 cm square. Find the hypotenuse by Heron's formula.....
Please.

Answers

Answered by Anonymous
35

AnswEr :

Given that,

  • Area of the traingle is 8 cm²

  • The triangle is a right iscoceles triangle

Let the similar sides of the triangle be 'a'

The hypotenuse in terms of side would be :

 \sf \: h {}^{2}  =  {a}^{2}  +  {a}^{2}  \\  \\  \longmapsto \:  \sf \: h = a \sqrt{2}

The sides of the traingle are a,a and a√2

\setlength{\unitlength}{2cm}\begin{picture}(1,1)\put(0,0){\vector(1,0){1}}\put(0,0){\vector(0,1){1}}\put(1,0){\vector(-1,1){1.01}}\put(-0.1,-0.1){{A}}\put(1.1,-0.1){{B}}\put(0,1){{C}}\put(1,0.5){{AB\:=\:AC\:=\:a}}\end{picture}

If the semi perimeter of the triangle is s :

 \sf \:  \longmapsto \: s =  \dfrac{2a + a \sqrt{2} }{2}  \\  \\  \sf \:  \longmapsto \:  s =  \dfrac{a(2 +  \sqrt{2} )}{2}

Applying the heron's formula,

 \sf \: Area =  \sqrt{s(s - x)(s - y)(s - z)}  \\  \\  \longrightarrow \:  \sf \: 8 =  \sqrt{s(s - a)(s - a)(s - a \sqrt{2} )}  \\  \\  \longrightarrow \:  \sf \: 64 = s(s - a) {}^{2} (s - a \sqrt{2} ) \\  \\  \longrightarrow \:  \sf \: 64 =   \dfrac{a(2 +  \sqrt{2} )}{2}  \times  \bigg( \dfrac{a(2 +  \sqrt{2}) }{2}  - a \bigg) {}^{2}  \times ( \dfrac{a(2 +  \sqrt{2} )}{2}  -a  \sqrt{2} ) \\  \\  \longrightarrow \:  \sf \: 64 =  \dfrac{a(2 +   \sqrt{2})  }{2}  \times  \bigg( \dfrac{2a + a \sqrt{2}  - 2a}{2}  \bigg) {}^{2}  \times ( \dfrac{2a + a \sqrt{2}  - 2a \sqrt{2} }{2} ) \\   \\  \longrightarrow \:  \sf \: 64 =  \dfrac{a(2 +  \sqrt{2}) }{2}  \times ( \dfrac{a \sqrt{2} }{2} ) {}^{2}  \times  \dfrac{a(2 -  \sqrt{2} )}{2}  \\  \\  \longrightarrow \sf \: 64 \times 8 = a {}^{4} (2  +  \sqrt{2} )(2 -  \sqrt{2} ) \\  \\  \longrightarrow \sf \: 64 \times 8 =  2{a}^{4}  \\  \\  \longrightarrow \:  \sf \:  {a}^{4}  = 256 \\  \\  \longrightarrow \:  \boxed{ \boxed{ \sf a = 4 \: cm}}

Now,

The hypotenuse of the triangle is of the form a√2

Thus,

Hypotenuse of the triangle is  4√2 cm


AbhijithPrakash: Awesome!!
Anonymous: Jeet Bhai :party_blob:
AbhijithPrakash: ^^"
Answered by Equestriadash
20

Given: An isosceles right-angled triangle having an area of 8 cm².

To find: The hypotenuse.

Answer:

Let's assume one of the triangle's sides to be 'a' cm.

Since it's isosceles, another one of its sides will be 'a' cm as well.

Given that it's a right-angled triangle, let's find the third side using the Pythagorus formula.

Hypotenuse² = Base² + Height²

Hypotenuse² = a² + a²

Hypotenuse² = 2a²

Hypotenuse = √2a²

Hypotenuse = √2 a cm.

Since we now have all it's sides, let's use Heron's formula to find the value of each side.

\bf Heron's\ formula:\ \sf \sqrt{s(s\ -\ x)(s\ -\ y)(s\ -\ z)}

Where 's', is the semi-perimeter and x, y, and z are the sides of the triangle.

s = (a + a + √2 a)/2

s = (2a + √2 a)/2

\sf s\ =\ \dfrac{2a\ +\ \sqrt{2}\ a}{2}

Now, from the values we have,

  • s = (2a + √2 a)/2
  • x = a
  • y = a
  • z = √2 a

Using them in the formula,

\sf Area\ [8]\ =\ \sqrt{\bigg(\dfrac{2a\ +\ \sqrt{2}\ a}{2}\bigg)\ \times\ \bigg(\dfrac{2a\ +\ \sqrt{2}\ a}{2}\ -\ a\bigg)^2\ \times\ \bigg(\dfrac{2a\ +\ \sqrt{2}\ a}{2}\ -\ \sqrt{2}\ a\bigg)}

Squaring both sides,

\sf 64\ =\ \bigg(\dfrac{2a\ +\ \sqrt{2}\ a}{2}\bigg)\ \times\ \ \bigg(\dfrac{2a\ +\ \sqrt{2}\ a\ -\ 2a}{2}\bigg)^2\ \times\ \bigg(\dfrac{2a\ +\ \sqrt{2}\ a\ -\ 2\sqrt{2}\ a}{2}\bigg)

\sf 64\ =\ \bigg(\dfrac{2a\ +\ \sqrt{2}\ a}{2}\bigg)\ \times\ \ \bigg(\dfrac{\sqrt{2a}}{2}\bigg)^2\ \times\ \bigg(\dfrac{2a\ -\sqrt{2}\ a}{2}\bigg)\\\\\\\\64\ =\ \dfrac{\bigg(2a\ +\ \sqrt{2}\ a\bigg)\ \times\ \bigg(\sqrt{2}\ a\bigg)^2\ \times\ \bigg(2a\ -\ \sqrt{2}\ a\bigg)}{8}\\\\\\\\64\ \times\ 8\ =\ \bigg(2a\ +\ \sqrt{2}\ a\bigg)\ \times\ \bigg(\sqrt{2}\ a\bigg)^2\ \times\ \bigg(2a\ -\ \sqrt{2}\ a\bigg)\\\\\\512\ =\ 2a^4\\\\\\\dfrac{512}{2}\ =\ a^4\\\\\\256\ =\ a^4\\\\\\\bf a\ =\ 4\ cm

Since a = 4 cm, its sides are 4 cm, 4 cm and 4√2 cm [hypotenuse].

Attachments:

Anonymous: Appreciable Work
Equestriadash: Thank you! ^_^" ♥
AbhijithPrakash: Awesome!! ヾ(^▽^*)))
Equestriadash: Thank you! (^∀^●)ノシ
Similar questions